diff --git a/keras-apps.py b/keras-apps.py index 9d62a96..2494a4a 100644 --- a/keras-apps.py +++ b/keras-apps.py @@ -167,8 +167,9 @@ def exp_path(exp_name=None, file_name=None): categorical_measures = [ 'Model', 'Accuracy', - 'Top 1 Accuracy', - 'Top 5 Accuracy', + 'recall', + 'precision', + 'f1', 'Categorical Cross-Entropy', 'Mean Absolute Error', 'Mean Squared Error', @@ -180,9 +181,6 @@ def exp_path(exp_name=None, file_name=None): 'KLDivergence', 'Poisson', 'Prediction time for one sample', - 'recall', - 'precision', - 'f1', ] # ================================= @@ -394,26 +392,24 @@ def measure(title, y_true, y_pred): def evaluate(y_true, y_pred, speed, exp_name): # calculate accuracy eval = f"{categorical_measures[1]}: %.3f" % measure('CategoricalAccuracy', y_true, y_pred) - # eval += f"\n{categorical_measures[2]}: %.3f" % measure('Top-1-CategoricalAccuracy', y_true, y_pred) - # eval += f"\n{categorical_measures[3]}: %.3f" % measure('Top-5-CategoricalAccuracy', y_true, y_pred) # recall, precision, and f1 measures - eval += f"\n{categorical_measures[15]}: %.3f" % recall_measure(y_true, y_pred) - eval += f"\n{categorical_measures[16]}: %.3f" % precision_measure(y_true, y_pred) - eval += f"\n{categorical_measures[17]}: %.3f" % f1_measure(y_true, y_pred) + eval += f"\n{categorical_measures[2]}: %.3f" % recall_measure(y_true, y_pred) + eval += f"\n{categorical_measures[3]}: %.3f" % precision_measure(y_true, y_pred) + eval += f"\n{categorical_measures[4]}: %.3f" % f1_measure(y_true, y_pred) # calculate losses - eval += f"\n{categorical_measures[4]}: %.3f" % measure('CategoricalCrossentropy', y_true, y_pred) - eval += f"\n{categorical_measures[5]}: %.3f" % measure('MeanAbsoluteError', y_true, y_pred) - eval += f"\n{categorical_measures[6]}: %.3f" % measure('MeanSquaredError', y_true, y_pred) - eval += f"\n{categorical_measures[7]}: %.3f" % measure('MeanSquaredLogarithmicError', y_true, y_pred) - eval += f"\n{categorical_measures[8]}: %.3f" % measure('RootMeanSquaredError', y_true, y_pred) - eval += f"\n{categorical_measures[9]}: %.3f" % measure('LogCoshError', y_true, y_pred) + eval += f"\n{categorical_measures[5]}: %.3f" % measure('CategoricalCrossentropy', y_true, y_pred) + eval += f"\n{categorical_measures[6]}: %.3f" % measure('MeanAbsoluteError', y_true, y_pred) + eval += f"\n{categorical_measures[7]}: %.3f" % measure('MeanSquaredError', y_true, y_pred) + eval += f"\n{categorical_measures[8]}: %.3f" % measure('MeanSquaredLogarithmicError', y_true, y_pred) + eval += f"\n{categorical_measures[9]}: %.3f" % measure('RootMeanSquaredError', y_true, y_pred) + eval += f"\n{categorical_measures[10]}: %.3f" % measure('LogCoshError', y_true, y_pred) # calculate other measures - eval += f"\n{categorical_measures[10]}: %.3f" % measure('CategoricalHinge', y_true, y_pred) - eval += f"\n{categorical_measures[11]}: %.3f" % measure('CosineSimilarity', y_true, y_pred) - eval += f"\n{categorical_measures[12]}: %.3f" % measure('KLDivergence', y_true, y_pred) - eval += f"\n{categorical_measures[13]}: %.3f" % measure('Poisson', y_true, y_pred) + eval += f"\n{categorical_measures[11]}: %.3f" % measure('CategoricalHinge', y_true, y_pred) + eval += f"\n{categorical_measures[12]}: %.3f" % measure('CosineSimilarity', y_true, y_pred) + eval += f"\n{categorical_measures[13]}: %.3f" % measure('KLDivergence', y_true, y_pred) + eval += f"\n{categorical_measures[14]}: %.3f" % measure('Poisson', y_true, y_pred) # prediction speed - eval += f"\n{categorical_measures[14]}: %.3f ms" % speed + eval += f"\n{categorical_measures[15]}: %.3f ms" % speed # print/write the results print(eval) with open(exp_path(exp_name, "eval.txt"), "+w") as f: