-
Notifications
You must be signed in to change notification settings - Fork 169
/
Copy pathmod.rs
994 lines (848 loc) · 39.2 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
use core::fmt;
use super::Felt;
mod decorators;
pub use decorators::{
AdviceInjector, AssemblyOp, DebugOptions, Decorator, DecoratorIterator, DecoratorList,
SignatureKind,
};
// OPERATIONS OP CODES
// ================================================================================================
use opcode_constants::*;
use winter_utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable};
/// Opcode patterns have the following meanings:
/// - 00xxxxx operations do not shift the stack; constraint degree can be up to 2.
/// - 010xxxx operations shift the stack the left; constraint degree can be up to 2.
/// - 011xxxx operations shift the stack to the right; constraint degree can be up to 2.
/// - 100xxx-: operations consume 4 range checks; constraint degree can be up to 3. These are used
/// to encode most u32 operations.
/// - 101xxx-: operations where constraint degree can be up to 3. These include control flow
/// operations and some other operations requiring high degree constraints.
/// - 11xxx--: operations where constraint degree can be up to 5. These include control flow
/// operations and some other operations requiring very high degree constraints.
#[rustfmt::skip]
pub(super) mod opcode_constants {
pub const OPCODE_NOOP: u8 = 0b0000_0000;
pub const OPCODE_EQZ: u8 = 0b0000_0001;
pub const OPCODE_NEG: u8 = 0b0000_0010;
pub const OPCODE_INV: u8 = 0b0000_0011;
pub const OPCODE_INCR: u8 = 0b0000_0100;
pub const OPCODE_NOT: u8 = 0b0000_0101;
pub const OPCODE_FMPADD: u8 = 0b0000_0110;
pub const OPCODE_MLOAD: u8 = 0b0000_0111;
pub const OPCODE_SWAP: u8 = 0b0000_1000;
pub const OPCODE_CALLER: u8 = 0b0000_1001;
pub const OPCODE_MOVUP2: u8 = 0b0000_1010;
pub const OPCODE_MOVDN2: u8 = 0b0000_1011;
pub const OPCODE_MOVUP3: u8 = 0b0000_1100;
pub const OPCODE_MOVDN3: u8 = 0b0000_1101;
pub const OPCODE_ADVPOPW: u8 = 0b0000_1110;
pub const OPCODE_EXPACC: u8 = 0b0000_1111;
pub const OPCODE_MOVUP4: u8 = 0b0001_0000;
pub const OPCODE_MOVDN4: u8 = 0b0001_0001;
pub const OPCODE_MOVUP5: u8 = 0b0001_0010;
pub const OPCODE_MOVDN5: u8 = 0b0001_0011;
pub const OPCODE_MOVUP6: u8 = 0b0001_0100;
pub const OPCODE_MOVDN6: u8 = 0b0001_0101;
pub const OPCODE_MOVUP7: u8 = 0b0001_0110;
pub const OPCODE_MOVDN7: u8 = 0b0001_0111;
pub const OPCODE_SWAPW: u8 = 0b0001_1000;
pub const OPCODE_EXT2MUL: u8 = 0b0001_1001;
pub const OPCODE_MOVUP8: u8 = 0b0001_1010;
pub const OPCODE_MOVDN8: u8 = 0b0001_1011;
pub const OPCODE_SWAPW2: u8 = 0b0001_1100;
pub const OPCODE_SWAPW3: u8 = 0b0001_1101;
pub const OPCODE_SWAPDW: u8 = 0b0001_1110;
pub const OPCODE_ASSERT: u8 = 0b0010_0000;
pub const OPCODE_EQ: u8 = 0b0010_0001;
pub const OPCODE_ADD: u8 = 0b0010_0010;
pub const OPCODE_MUL: u8 = 0b0010_0011;
pub const OPCODE_AND: u8 = 0b0010_0100;
pub const OPCODE_OR: u8 = 0b0010_0101;
pub const OPCODE_U32AND: u8 = 0b0010_0110;
pub const OPCODE_U32XOR: u8 = 0b0010_0111;
pub const OPCODE_FRIE2F4: u8 = 0b0010_1000;
pub const OPCODE_DROP: u8 = 0b0010_1001;
pub const OPCODE_CSWAP: u8 = 0b0010_1010;
pub const OPCODE_CSWAPW: u8 = 0b0010_1011;
pub const OPCODE_MLOADW: u8 = 0b0010_1100;
pub const OPCODE_MSTORE: u8 = 0b0010_1101;
pub const OPCODE_MSTOREW: u8 = 0b0010_1110;
pub const OPCODE_FMPUPDATE: u8 = 0b0010_1111;
pub const OPCODE_PAD: u8 = 0b0011_0000;
pub const OPCODE_DUP0: u8 = 0b0011_0001;
pub const OPCODE_DUP1: u8 = 0b0011_0010;
pub const OPCODE_DUP2: u8 = 0b0011_0011;
pub const OPCODE_DUP3: u8 = 0b0011_0100;
pub const OPCODE_DUP4: u8 = 0b0011_0101;
pub const OPCODE_DUP5: u8 = 0b0011_0110;
pub const OPCODE_DUP6: u8 = 0b0011_0111;
pub const OPCODE_DUP7: u8 = 0b0011_1000;
pub const OPCODE_DUP9: u8 = 0b0011_1001;
pub const OPCODE_DUP11: u8 = 0b0011_1010;
pub const OPCODE_DUP13: u8 = 0b0011_1011;
pub const OPCODE_DUP15: u8 = 0b0011_1100;
pub const OPCODE_ADVPOP: u8 = 0b0011_1101;
pub const OPCODE_SDEPTH: u8 = 0b0011_1110;
pub const OPCODE_CLK: u8 = 0b0011_1111;
pub const OPCODE_U32ADD: u8 = 0b0100_0000;
pub const OPCODE_U32SUB: u8 = 0b0100_0010;
pub const OPCODE_U32MUL: u8 = 0b0100_0100;
pub const OPCODE_U32DIV: u8 = 0b0100_0110;
pub const OPCODE_U32SPLIT: u8 = 0b0100_1000;
pub const OPCODE_U32ASSERT2: u8 = 0b0100_1010;
pub const OPCODE_U32ADD3: u8 = 0b0100_1100;
pub const OPCODE_U32MADD: u8 = 0b0100_1110;
pub const OPCODE_HPERM: u8 = 0b0101_0000;
pub const OPCODE_MPVERIFY: u8 = 0b0101_0001;
pub const OPCODE_PIPE: u8 = 0b0101_0010;
pub const OPCODE_MSTREAM: u8 = 0b0101_0011;
pub const OPCODE_SPLIT: u8 = 0b0101_0100;
pub const OPCODE_LOOP: u8 = 0b0101_0101;
pub const OPCODE_SPAN: u8 = 0b0101_0110;
pub const OPCODE_JOIN: u8 = 0b0101_0111;
pub const OPCODE_DYN: u8 = 0b0101_1000;
pub const OPCODE_RCOMBBASE: u8 = 0b0101_1001;
pub const OPCODE_EMIT: u8 = 0b0101_1010;
pub const OPCODE_PUSH: u8 = 0b0101_1011;
pub const OPCODE_DYNCALL: u8 = 0b0101_1100;
pub const OPCODE_MRUPDATE: u8 = 0b0110_0000;
/* unused: 0b0110_0100 */
pub const OPCODE_SYSCALL: u8 = 0b0110_1000;
pub const OPCODE_CALL: u8 = 0b0110_1100;
pub const OPCODE_END: u8 = 0b0111_0000;
pub const OPCODE_REPEAT: u8 = 0b0111_0100;
pub const OPCODE_RESPAN: u8 = 0b0111_1000;
pub const OPCODE_HALT: u8 = 0b0111_1100;
}
// OPERATIONS
// ================================================================================================
/// A set of native VM operations which take exactly one cycle to execute.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[repr(u8)]
pub enum Operation {
// ----- system operations -------------------------------------------------------------------
/// Advances cycle counter, but does not change the state of user stack.
Noop = OPCODE_NOOP,
/// Pops the stack; if the popped value is not 1, execution fails.
///
/// The internal value specifies an error code associated with the error in case when the
/// execution fails.
Assert(u32) = OPCODE_ASSERT,
/// Pops an element off the stack, adds the current value of the `fmp` register to it, and
/// pushes the result back onto the stack.
FmpAdd = OPCODE_FMPADD,
/// Pops an element off the stack and adds it to the current value of `fmp` register.
FmpUpdate = OPCODE_FMPUPDATE,
/// Pushes the current depth of the stack onto the stack.
SDepth = OPCODE_SDEPTH,
/// Overwrites the top four stack items with the hash of a function which initiated the current
/// SYSCALL. Thus, this operation can be executed only inside a SYSCALL code block.
Caller = OPCODE_CALLER,
/// Pushes the current value of the clock cycle onto the stack. This operation can be used to
/// measure the number of cycles it has taken to execute the program up to the current
/// instruction.
Clk = OPCODE_CLK,
/// Emits an event id (`u32` value) to the host.
///
/// We interpret the event id as follows:
/// - 16 most significant bits identify the event source,
/// - 16 least significant bits identify the actual event.
///
/// Similar to Noop, this operation does not change the state of user stack. The immediate
/// value affects the program MAST root computation.
Emit(u32) = OPCODE_EMIT,
// ----- flow control operations -------------------------------------------------------------
/// Marks the beginning of a join block.
Join = OPCODE_JOIN,
/// Marks the beginning of a split block.
Split = OPCODE_SPLIT,
/// Marks the beginning of a loop block.
Loop = OPCODE_LOOP,
/// Marks the beginning of a function call.
Call = OPCODE_CALL,
/// Marks the beginning of a dynamic code block, where the target is specified by the stack.
Dyn = OPCODE_DYN,
/// Marks the beginning of a dynamic function call, where the target is specified by the stack.
Dyncall = OPCODE_DYNCALL,
/// Marks the beginning of a kernel call.
SysCall = OPCODE_SYSCALL,
/// Marks the beginning of a span code block.
Span = OPCODE_SPAN,
/// Marks the end of a program block.
End = OPCODE_END,
/// Indicates that body of an executing loop should be executed again.
Repeat = OPCODE_REPEAT,
/// Starts processing a new operation batch.
Respan = OPCODE_RESPAN,
/// Indicates the end of the program. This is used primarily to pad the execution trace to
/// the required length. Once HALT operation is executed, no other operations can be executed
/// by the VM (HALT operation itself excepted).
Halt = OPCODE_HALT,
// ----- field operations --------------------------------------------------------------------
/// Pops two elements off the stack, adds them, and pushes the result back onto the stack.
Add = OPCODE_ADD,
/// Pops an element off the stack, negates it, and pushes the result back onto the stack.
Neg = OPCODE_NEG,
/// Pops two elements off the stack, multiplies them, and pushes the result back onto the
/// stack.
Mul = OPCODE_MUL,
/// Pops an element off the stack, computes its multiplicative inverse, and pushes the result
/// back onto the stack.
Inv = OPCODE_INV,
/// Pops an element off the stack, adds 1 to it, and pushes the result back onto the stack.
Incr = OPCODE_INCR,
/// Pops two elements off the stack, multiplies them, and pushes the result back onto the
/// stack.
///
/// If either of the elements is greater than 1, execution fails. This operation is equivalent
/// to boolean AND.
And = OPCODE_AND,
/// Pops two elements off the stack and subtracts their product from their sum.
///
/// If either of the elements is greater than 1, execution fails. This operation is equivalent
/// to boolean OR.
Or = OPCODE_OR,
/// Pops an element off the stack and subtracts it from 1.
///
/// If the element is greater than one, the execution fails. This operation is equivalent to
/// boolean NOT.
Not = OPCODE_NOT,
/// Pops two elements off the stack and compares them. If the elements are equal, pushes 1
/// onto the stack, otherwise pushes 0 onto the stack.
Eq = OPCODE_EQ,
/// Pops an element off the stack and compares it to 0. If the element is 0, pushes 1 onto
/// the stack, otherwise pushes 0 onto the stack.
Eqz = OPCODE_EQZ,
/// Computes a single turn of exponent accumulation for the given inputs. This operation can be
/// be used to compute a single turn of power of a field element.
///
/// The top 4 elements of the stack are expected to be arranged as follows (form the top):
/// - least significant bit of the exponent in the previous trace if there's an expacc call,
/// otherwise ZERO
/// - exponent of base number `a` for this turn
/// - accumulated power of base number `a` so far
/// - number which needs to be shifted to the right
///
/// At the end of the operation, exponent is replaced with its square, current value of power
/// of base number `a` on exponent is incorporated into the accumulator and the number is
/// shifted to the right by one bit.
Expacc = OPCODE_EXPACC,
// ----- ext2 operations ---------------------------------------------------------------------
/// Computes the product of two elements in the extension field of degree 2 and pushes the
/// result back onto the stack as the third and fourth elements. Pushes 0 onto the stack as
/// the first and second elements.
Ext2Mul = OPCODE_EXT2MUL,
// ----- u32 operations ----------------------------------------------------------------------
/// Pops an element off the stack, splits it into upper and lower 32-bit values, and pushes
/// these values back onto the stack.
U32split = OPCODE_U32SPLIT,
/// Pops two elements off the stack, adds them, and splits the result into upper and lower
/// 32-bit values. Then pushes these values back onto the stack.
///
/// If either of these elements is greater than or equal to 2^32, the result of this
/// operation is undefined.
U32add = OPCODE_U32ADD,
/// Pops two elements off the stack and checks if each of them represents a 32-bit value.
/// If both of them are, they are pushed back onto the stack, otherwise an error is returned.
///
/// The internal value specifies an error code associated with the error in case when the
/// assertion fails.
U32assert2(u32) = OPCODE_U32ASSERT2,
/// Pops three elements off the stack, adds them together, and splits the result into upper
/// and lower 32-bit values. Then pushes the result back onto the stack.
U32add3 = OPCODE_U32ADD3,
/// Pops two elements off the stack and subtracts the first element from the second. Then,
/// the result, together with a flag indicating whether subtraction underflowed is pushed
/// onto the stack.
///
/// If their of the values is greater than or equal to 2^32, the result of this operation is
/// undefined.
U32sub = OPCODE_U32SUB,
/// Pops two elements off the stack, multiplies them, and splits the result into upper and
/// lower 32-bit values. Then pushes these values back onto the stack.
///
/// If their of the values is greater than or equal to 2^32, the result of this operation is
/// undefined.
U32mul = OPCODE_U32MUL,
/// Pops two elements off the stack and multiplies them. Then pops the third element off the
/// stack, and adds it to the result. Finally, splits the result into upper and lower 32-bit
/// values, and pushes them onto the stack.
///
/// If any of the three values is greater than or equal to 2^32, the result of this operation
/// is undefined.
U32madd = OPCODE_U32MADD,
/// Pops two elements off the stack and divides the second element by the first. Then pushes
/// the integer result of the division, together with the remainder, onto the stack.
///
/// If their of the values is greater than or equal to 2^32, the result of this operation is
/// undefined.
U32div = OPCODE_U32DIV,
/// Pops two elements off the stack, computes their binary AND, and pushes the result back
/// onto the stack.
///
/// If either of the elements is greater than or equal to 2^32, execution fails.
U32and = OPCODE_U32AND,
/// Pops two elements off the stack, computes their binary XOR, and pushes the result back
/// onto the stack.
///
/// If either of the elements is greater than or equal to 2^32, execution fails.
U32xor = OPCODE_U32XOR,
// ----- stack manipulation ------------------------------------------------------------------
/// Pushes 0 onto the stack.
Pad = OPCODE_PAD,
/// Removes to element from the stack.
Drop = OPCODE_DROP,
/// Pushes a copy of stack element 0 onto the stack.
Dup0 = OPCODE_DUP0,
/// Pushes a copy of stack element 1 onto the stack.
Dup1 = OPCODE_DUP1,
/// Pushes a copy of stack element 2 onto the stack.
Dup2 = OPCODE_DUP2,
/// Pushes a copy of stack element 3 onto the stack.
Dup3 = OPCODE_DUP3,
/// Pushes a copy of stack element 4 onto the stack.
Dup4 = OPCODE_DUP4,
/// Pushes a copy of stack element 5 onto the stack.
Dup5 = OPCODE_DUP5,
/// Pushes a copy of stack element 6 onto the stack.
Dup6 = OPCODE_DUP6,
/// Pushes a copy of stack element 7 onto the stack.
Dup7 = OPCODE_DUP7,
/// Pushes a copy of stack element 9 onto the stack.
Dup9 = OPCODE_DUP9,
/// Pushes a copy of stack element 11 onto the stack.
Dup11 = OPCODE_DUP11,
/// Pushes a copy of stack element 13 onto the stack.
Dup13 = OPCODE_DUP13,
/// Pushes a copy of stack element 15 onto the stack.
Dup15 = OPCODE_DUP15,
/// Swaps stack elements 0 and 1.
Swap = OPCODE_SWAP,
/// Swaps stack elements 0, 1, 2, and 3 with elements 4, 5, 6, and 7.
SwapW = OPCODE_SWAPW,
/// Swaps stack elements 0, 1, 2, and 3 with elements 8, 9, 10, and 11.
SwapW2 = OPCODE_SWAPW2,
/// Swaps stack elements 0, 1, 2, and 3, with elements 12, 13, 14, and 15.
SwapW3 = OPCODE_SWAPW3,
/// Swaps the top two words pair wise.
///
/// Input: [D, C, B, A, ...]
/// Output: [B, A, D, C, ...]
SwapDW = OPCODE_SWAPDW,
/// Moves stack element 2 to the top of the stack.
MovUp2 = OPCODE_MOVUP2,
/// Moves stack element 3 to the top of the stack.
MovUp3 = OPCODE_MOVUP3,
/// Moves stack element 4 to the top of the stack.
MovUp4 = OPCODE_MOVUP4,
/// Moves stack element 5 to the top of the stack.
MovUp5 = OPCODE_MOVUP5,
/// Moves stack element 6 to the top of the stack.
MovUp6 = OPCODE_MOVUP6,
/// Moves stack element 7 to the top of the stack.
MovUp7 = OPCODE_MOVUP7,
/// Moves stack element 8 to the top of the stack.
MovUp8 = OPCODE_MOVUP8,
/// Moves the top stack element to position 2 on the stack.
MovDn2 = OPCODE_MOVDN2,
/// Moves the top stack element to position 3 on the stack.
MovDn3 = OPCODE_MOVDN3,
/// Moves the top stack element to position 4 on the stack.
MovDn4 = OPCODE_MOVDN4,
/// Moves the top stack element to position 5 on the stack.
MovDn5 = OPCODE_MOVDN5,
/// Moves the top stack element to position 6 on the stack.
MovDn6 = OPCODE_MOVDN6,
/// Moves the top stack element to position 7 on the stack.
MovDn7 = OPCODE_MOVDN7,
/// Moves the top stack element to position 8 on the stack.
MovDn8 = OPCODE_MOVDN8,
/// Pops an element off the stack, and if the element is 1, swaps the top two remaining
/// elements on the stack. If the popped element is 0, the stack remains unchanged.
///
/// If the popped element is neither 0 nor 1, execution fails.
CSwap = OPCODE_CSWAP,
/// Pops an element off the stack, and if the element is 1, swaps the remaining elements
/// 0, 1, 2, and 3 with elements 4, 5, 6, and 7. If the popped element is 0, the stack
/// remains unchanged.
///
/// If the popped element is neither 0 nor 1, execution fails.
CSwapW = OPCODE_CSWAPW,
// ----- input / output ----------------------------------------------------------------------
/// Pushes the immediate value onto the stack.
Push(Felt) = OPCODE_PUSH,
/// Removes the next element from the advice stack and pushes it onto the operand stack.
AdvPop = OPCODE_ADVPOP,
/// Removes a word (4 elements) from the advice stack and overwrites the top four operand
/// stack elements with it.
AdvPopW = OPCODE_ADVPOPW,
/// Pops an element off the stack, interprets it as a memory address, and replaces the
/// remaining 4 elements at the top of the stack with values located at the specified address.
MLoadW = OPCODE_MLOADW,
/// Pops an element off the stack, interprets it as a memory address, and writes the remaining
/// 4 elements at the top of the stack into memory at the specified address.
MStoreW = OPCODE_MSTOREW,
/// Pops an element off the stack, interprets it as a memory address, and pushes the first
/// element of the word located at the specified address to the stack.
MLoad = OPCODE_MLOAD,
/// Pops an element off the stack, interprets it as a memory address, and writes the remaining
/// element at the top of the stack into the first element of the word located at the specified
/// memory address. The remaining 3 elements of the word are not affected.
MStore = OPCODE_MSTORE,
/// Loads two words from memory, and replaces the top 8 elements of the stack with them,
/// element-wise, in stack order.
///
/// The operation works as follows:
/// - The memory address of the first word is retrieved from 13th stack element (position 12).
/// - Two consecutive words, starting at this address, are loaded from memory.
/// - The top 8 elements of the stack are overwritten with these words (element-wise, in stack
/// order).
/// - Memory address (in position 12) is incremented by 2.
/// - All other stack elements remain the same.
MStream = OPCODE_MSTREAM,
/// Pops two words from the advice stack, writes them to memory, and replaces the top 8
/// elements of the stack with them, element-wise, in stack order.
///
/// The operation works as follows:
/// - Two words are popped from the advice stack.
/// - The destination memory address for the first word is retrieved from the 13th stack
/// element (position 12).
/// - The two words are written to memory consecutively, starting at this address.
/// - The top 8 elements of the stack are overwritten with these words (element-wise, in stack
/// order).
/// - Memory address (in position 12) is incremented by 2.
/// - All other stack elements remain the same.
Pipe = OPCODE_PIPE,
// ----- cryptographic operations ------------------------------------------------------------
/// Performs a Rescue Prime Optimized permutation on the top 3 words of the operand stack,
/// where the top 2 words are the rate (words C and B), the deepest word is the capacity (word
/// A), and the digest output is the middle word E.
///
/// Stack transition:
/// [C, B, A, ...] -> [F, E, D, ...]
HPerm = OPCODE_HPERM,
/// Verifies that a Merkle path from the specified node resolves to the specified root. This
/// operation can be used to prove that the prover knows a path in the specified Merkle tree
/// which starts with the specified node.
///
/// The stack is expected to be arranged as follows (from the top):
/// - value of the node, 4 elements.
/// - depth of the path, 1 element.
/// - index of the node, 1 element.
/// - root of the tree, 4 elements.
///
/// The Merkle path itself is expected to be provided by the prover non-deterministically (via
/// merkle sets). If the prover is not able to provide the required path, the operation fails.
/// The state of the stack does not change.
///
/// The internal value specifies an error code associated with the error in case when the
/// assertion fails.
MpVerify(u32) = OPCODE_MPVERIFY,
/// Computes a new root of a Merkle tree where a node at the specified position is updated to
/// the specified value.
///
/// The stack is expected to be arranged as follows (from the top):
/// - old value of the node, 4 element
/// - depth of the node, 1 element
/// - index of the node, 1 element
/// - current root of the tree, 4 elements
/// - new value of the node, 4 element
///
/// The Merkle path for the node is expected to be provided by the prover non-deterministically
/// via the advice provider. At the end of the operation, the old node value is replaced with
/// the new root value, that is computed based on the provided path. Everything else on the
/// stack remains the same.
///
/// The tree will always be copied into a new instance, meaning the advice provider will keep
/// track of both the old and new Merkle trees.
MrUpdate = OPCODE_MRUPDATE,
/// TODO: add docs
FriE2F4 = OPCODE_FRIE2F4,
/// Performs a single step of a random linear combination defining the DEEP composition
/// polynomial i.e., the input to the FRI protocol. More precisely, the sum in question is:
/// \sum_{i=0}^k{\alpha_i \cdot \left(\frac{T_i(x) - T_i(z)}{x - z} +
/// \frac{T_i(x) - T_i(g \cdot z)}{x - g \cdot z} \right)}
///
/// and the following instruction computes the numerators $\alpha_i \cdot (T_i(x) - T_i(z))$
/// and $\alpha_i \cdot (T_i(x) - T_i(g \cdot z))$ and stores the values in two accumulators
/// $r$ and $p$, respectively. This instruction is specialized to main trace columns i.e.
/// the values $T_i(x)$ are base field elements.
RCombBase = OPCODE_RCOMBBASE,
}
impl Operation {
pub const OP_BITS: usize = 7;
/// Returns the opcode of this operation.
#[rustfmt::skip]
pub fn op_code(&self) -> u8 {
// SAFETY: This is safe because we have given this enum a primitive representation with
// #[repr(u8)], with the first field of the underlying union-of-structs the discriminant.
//
// See the section on "accessing the numeric value of the discriminant"
// here: https://doc.rust-lang.org/std/mem/fn.discriminant.html
unsafe { *<*const _>::from(self).cast::<u8>() }
}
/// Returns an immediate value carried by this operation.
pub fn imm_value(&self) -> Option<Felt> {
match *self {
Self::Push(imm) => Some(imm),
Self::Emit(imm) => Some(imm.into()),
_ => None,
}
}
/// Returns true if this operation writes any data to the decoder hasher registers.
///
/// In other words, if so, then the user op helper registers are not available.
pub fn populates_decoder_hasher_registers(&self) -> bool {
matches!(
self,
Self::End
| Self::Join
| Self::Split
| Self::Loop
| Self::Repeat
| Self::Respan
| Self::Span
| Self::Halt
| Self::Call
| Self::SysCall
)
}
}
impl crate::prettier::PrettyPrint for Operation {
fn render(&self) -> crate::prettier::Document {
crate::prettier::display(self)
}
}
impl fmt::Display for Operation {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
// ----- system operations ------------------------------------------------------------
Self::Noop => write!(f, "noop"),
Self::Assert(err_code) => write!(f, "assert({err_code})"),
Self::FmpAdd => write!(f, "fmpadd"),
Self::FmpUpdate => write!(f, "fmpupdate"),
Self::SDepth => write!(f, "sdepth"),
Self::Caller => write!(f, "caller"),
Self::Clk => write!(f, "clk"),
// ----- flow control operations ------------------------------------------------------
Self::Join => write!(f, "join"),
Self::Split => write!(f, "split"),
Self::Loop => write!(f, "loop"),
Self::Call => writeln!(f, "call"),
Self::Dyncall => writeln!(f, "dyncall"),
Self::SysCall => writeln!(f, "syscall"),
Self::Dyn => writeln!(f, "dyn"),
Self::Span => write!(f, "span"),
Self::End => write!(f, "end"),
Self::Repeat => write!(f, "repeat"),
Self::Respan => write!(f, "respan"),
Self::Halt => write!(f, "halt"),
// ----- field operations -------------------------------------------------------------
Self::Add => write!(f, "add"),
Self::Neg => write!(f, "neg"),
Self::Mul => write!(f, "mul"),
Self::Inv => write!(f, "inv"),
Self::Incr => write!(f, "incr"),
Self::And => write!(f, "and"),
Self::Or => write!(f, "or"),
Self::Not => write!(f, "not"),
Self::Eq => write!(f, "eq"),
Self::Eqz => write!(f, "eqz"),
Self::Expacc => write!(f, "expacc"),
// ----- ext2 operations --------------------------------------------------------------
Self::Ext2Mul => write!(f, "ext2mul"),
// ----- u32 operations ---------------------------------------------------------------
Self::U32assert2(err_code) => write!(f, "u32assert2({err_code})"),
Self::U32split => write!(f, "u32split"),
Self::U32add => write!(f, "u32add"),
Self::U32add3 => write!(f, "u32add3"),
Self::U32sub => write!(f, "u32sub"),
Self::U32mul => write!(f, "u32mul"),
Self::U32madd => write!(f, "u32madd"),
Self::U32div => write!(f, "u32div"),
Self::U32and => write!(f, "u32and"),
Self::U32xor => write!(f, "u32xor"),
// ----- stack manipulation -----------------------------------------------------------
Self::Drop => write!(f, "drop"),
Self::Pad => write!(f, "pad"),
Self::Dup0 => write!(f, "dup0"),
Self::Dup1 => write!(f, "dup1"),
Self::Dup2 => write!(f, "dup2"),
Self::Dup3 => write!(f, "dup3"),
Self::Dup4 => write!(f, "dup4"),
Self::Dup5 => write!(f, "dup5"),
Self::Dup6 => write!(f, "dup6"),
Self::Dup7 => write!(f, "dup7"),
Self::Dup9 => write!(f, "dup9"),
Self::Dup11 => write!(f, "dup11"),
Self::Dup13 => write!(f, "dup13"),
Self::Dup15 => write!(f, "dup15"),
Self::Swap => write!(f, "swap"),
Self::SwapW => write!(f, "swapw"),
Self::SwapW2 => write!(f, "swapw2"),
Self::SwapW3 => write!(f, "swapw3"),
Self::SwapDW => write!(f, "swapdw"),
Self::MovUp2 => write!(f, "movup2"),
Self::MovUp3 => write!(f, "movup3"),
Self::MovUp4 => write!(f, "movup4"),
Self::MovUp5 => write!(f, "movup5"),
Self::MovUp6 => write!(f, "movup6"),
Self::MovUp7 => write!(f, "movup7"),
Self::MovUp8 => write!(f, "movup8"),
Self::MovDn2 => write!(f, "movdn2"),
Self::MovDn3 => write!(f, "movdn3"),
Self::MovDn4 => write!(f, "movdn4"),
Self::MovDn5 => write!(f, "movdn5"),
Self::MovDn6 => write!(f, "movdn6"),
Self::MovDn7 => write!(f, "movdn7"),
Self::MovDn8 => write!(f, "movdn8"),
Self::CSwap => write!(f, "cswap"),
Self::CSwapW => write!(f, "cswapw"),
// ----- input / output ---------------------------------------------------------------
Self::Push(value) => write!(f, "push({value})"),
Self::AdvPop => write!(f, "advpop"),
Self::AdvPopW => write!(f, "advpopw"),
Self::MLoadW => write!(f, "mloadw"),
Self::MStoreW => write!(f, "mstorew"),
Self::MLoad => write!(f, "mload"),
Self::MStore => write!(f, "mstore"),
Self::MStream => write!(f, "mstream"),
Self::Pipe => write!(f, "pipe"),
Self::Emit(value) => write!(f, "emit({value})"),
// ----- cryptographic operations -----------------------------------------------------
Self::HPerm => write!(f, "hperm"),
Self::MpVerify(err_code) => write!(f, "mpverify({err_code})"),
Self::MrUpdate => write!(f, "mrupdate"),
Self::FriE2F4 => write!(f, "frie2f4"),
Self::RCombBase => write!(f, "rcomb1"),
}
}
}
impl Serializable for Operation {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
target.write_u8(self.op_code());
// For operations that have extra data, encode it in `data`.
match self {
Operation::Assert(err_code)
| Operation::MpVerify(err_code)
| Operation::U32assert2(err_code) => {
err_code.write_into(target);
},
Operation::Push(value) => value.as_int().write_into(target),
Operation::Emit(value) => value.write_into(target),
// Note: we explicitly write out all the operations so that whenever we make a
// modification to the `Operation` enum, we get a compile error here. This
// should help us remember to properly encode/decode each operation variant.
Operation::Noop
| Operation::FmpAdd
| Operation::FmpUpdate
| Operation::SDepth
| Operation::Caller
| Operation::Clk
| Operation::Join
| Operation::Split
| Operation::Loop
| Operation::Call
| Operation::Dyn
| Operation::Dyncall
| Operation::SysCall
| Operation::Span
| Operation::End
| Operation::Repeat
| Operation::Respan
| Operation::Halt
| Operation::Add
| Operation::Neg
| Operation::Mul
| Operation::Inv
| Operation::Incr
| Operation::And
| Operation::Or
| Operation::Not
| Operation::Eq
| Operation::Eqz
| Operation::Expacc
| Operation::Ext2Mul
| Operation::U32split
| Operation::U32add
| Operation::U32add3
| Operation::U32sub
| Operation::U32mul
| Operation::U32madd
| Operation::U32div
| Operation::U32and
| Operation::U32xor
| Operation::Pad
| Operation::Drop
| Operation::Dup0
| Operation::Dup1
| Operation::Dup2
| Operation::Dup3
| Operation::Dup4
| Operation::Dup5
| Operation::Dup6
| Operation::Dup7
| Operation::Dup9
| Operation::Dup11
| Operation::Dup13
| Operation::Dup15
| Operation::Swap
| Operation::SwapW
| Operation::SwapW2
| Operation::SwapW3
| Operation::SwapDW
| Operation::MovUp2
| Operation::MovUp3
| Operation::MovUp4
| Operation::MovUp5
| Operation::MovUp6
| Operation::MovUp7
| Operation::MovUp8
| Operation::MovDn2
| Operation::MovDn3
| Operation::MovDn4
| Operation::MovDn5
| Operation::MovDn6
| Operation::MovDn7
| Operation::MovDn8
| Operation::CSwap
| Operation::CSwapW
| Operation::AdvPop
| Operation::AdvPopW
| Operation::MLoadW
| Operation::MStoreW
| Operation::MLoad
| Operation::MStore
| Operation::MStream
| Operation::Pipe
| Operation::HPerm
| Operation::MrUpdate
| Operation::FriE2F4
| Operation::RCombBase => (),
}
}
}
impl Deserializable for Operation {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
let op_code = source.read_u8()?;
let operation = match op_code {
OPCODE_NOOP => Self::Noop,
OPCODE_EQZ => Self::Eqz,
OPCODE_NEG => Self::Neg,
OPCODE_INV => Self::Inv,
OPCODE_INCR => Self::Incr,
OPCODE_NOT => Self::Not,
OPCODE_FMPADD => Self::FmpAdd,
OPCODE_MLOAD => Self::MLoad,
OPCODE_SWAP => Self::Swap,
OPCODE_CALLER => Self::Caller,
OPCODE_MOVUP2 => Self::MovUp2,
OPCODE_MOVDN2 => Self::MovDn2,
OPCODE_MOVUP3 => Self::MovUp3,
OPCODE_MOVDN3 => Self::MovDn3,
OPCODE_ADVPOPW => Self::AdvPopW,
OPCODE_EXPACC => Self::Expacc,
OPCODE_MOVUP4 => Self::MovUp4,
OPCODE_MOVDN4 => Self::MovDn4,
OPCODE_MOVUP5 => Self::MovUp5,
OPCODE_MOVDN5 => Self::MovDn5,
OPCODE_MOVUP6 => Self::MovUp6,
OPCODE_MOVDN6 => Self::MovDn6,
OPCODE_MOVUP7 => Self::MovUp7,
OPCODE_MOVDN7 => Self::MovDn7,
OPCODE_SWAPW => Self::SwapW,
OPCODE_EXT2MUL => Self::Ext2Mul,
OPCODE_MOVUP8 => Self::MovUp8,
OPCODE_MOVDN8 => Self::MovDn8,
OPCODE_SWAPW2 => Self::SwapW2,
OPCODE_SWAPW3 => Self::SwapW3,
OPCODE_SWAPDW => Self::SwapDW,
OPCODE_ASSERT => {
let err_code = source.read_u32()?;
Self::Assert(err_code)
},
OPCODE_EQ => Self::Eq,
OPCODE_ADD => Self::Add,
OPCODE_MUL => Self::Mul,
OPCODE_AND => Self::And,
OPCODE_OR => Self::Or,
OPCODE_U32AND => Self::U32and,
OPCODE_U32XOR => Self::U32xor,
OPCODE_FRIE2F4 => Self::FriE2F4,
OPCODE_DROP => Self::Drop,
OPCODE_CSWAP => Self::CSwap,
OPCODE_CSWAPW => Self::CSwapW,
OPCODE_MLOADW => Self::MLoadW,
OPCODE_MSTORE => Self::MStore,
OPCODE_MSTOREW => Self::MStoreW,
OPCODE_FMPUPDATE => Self::FmpUpdate,
OPCODE_PAD => Self::Pad,
OPCODE_DUP0 => Self::Dup0,
OPCODE_DUP1 => Self::Dup1,
OPCODE_DUP2 => Self::Dup2,
OPCODE_DUP3 => Self::Dup3,
OPCODE_DUP4 => Self::Dup4,
OPCODE_DUP5 => Self::Dup5,
OPCODE_DUP6 => Self::Dup6,
OPCODE_DUP7 => Self::Dup7,
OPCODE_DUP9 => Self::Dup9,
OPCODE_DUP11 => Self::Dup11,
OPCODE_DUP13 => Self::Dup13,
OPCODE_DUP15 => Self::Dup15,
OPCODE_ADVPOP => Self::AdvPop,
OPCODE_SDEPTH => Self::SDepth,
OPCODE_CLK => Self::Clk,
OPCODE_U32ADD => Self::U32add,
OPCODE_U32SUB => Self::U32sub,
OPCODE_U32MUL => Self::U32mul,
OPCODE_U32DIV => Self::U32div,
OPCODE_U32SPLIT => Self::U32split,
OPCODE_U32ASSERT2 => {
let err_code = source.read_u32()?;
Self::U32assert2(err_code)
},
OPCODE_U32ADD3 => Self::U32add3,
OPCODE_U32MADD => Self::U32madd,
OPCODE_HPERM => Self::HPerm,
OPCODE_MPVERIFY => {
let err_code = source.read_u32()?;
Self::MpVerify(err_code)
},
OPCODE_PIPE => Self::Pipe,
OPCODE_MSTREAM => Self::MStream,
OPCODE_SPLIT => Self::Split,
OPCODE_LOOP => Self::Loop,
OPCODE_SPAN => Self::Span,
OPCODE_JOIN => Self::Join,
OPCODE_DYN => Self::Dyn,
OPCODE_DYNCALL => Self::Dyncall,
OPCODE_RCOMBBASE => Self::RCombBase,
OPCODE_MRUPDATE => Self::MrUpdate,
OPCODE_PUSH => {
let value_u64 = source.read_u64()?;
let value_felt = Felt::try_from(value_u64).map_err(|_| {
DeserializationError::InvalidValue(format!(
"Operation associated data doesn't fit in a field element: {value_u64}"
))
})?;
Self::Push(value_felt)
},
OPCODE_EMIT => {
let value = source.read_u32()?;
Self::Emit(value)
},
OPCODE_SYSCALL => Self::SysCall,
OPCODE_CALL => Self::Call,
OPCODE_END => Self::End,
OPCODE_REPEAT => Self::Repeat,
OPCODE_RESPAN => Self::Respan,
OPCODE_HALT => Self::Halt,
_ => {
return Err(DeserializationError::InvalidValue(format!(
"Invalid opcode '{op_code}'"
)));
},
};
Ok(operation)
}
}