-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathhelper.py
172 lines (148 loc) · 6.01 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# coding: utf-8
import math
import cv2
import pickle
import numpy as np
import argparse
import os
import sys
from CImageName import ImageName
import asyncio
import time
def read_pkl_model(mpath):
with open(mpath, 'rb') as infile:
(mlp, class_names) = pickle.load(infile)
print('FR model loadded: ', class_names)
return mlp, class_names
def start_up_init():
parser = argparse.ArgumentParser(description='ArcFace Online Test')
# =================== General ARGS ====================
parser.add_argument('--max_face_number',
type=int,
help='同时检测的最大人脸数量',
default=16)
parser.add_argument('--max_frame_rate',
type=int,
help='Max frame rate',
default=25)
parser.add_argument('--queue_buffer_size',
type=int,
help='MP Queue size',
default=12)
parser.add_argument('-c', '--usb_camera_code',
type=int,
nargs='+',
help='Code of usb camera. (You can use media file path to test with videos.)',
default=[0])
parser.add_argument('--address_list',
type=float,
nargs='+',
help='IP address of web camera',
default=['10.41.0.198', '10.41.0.199'])
parser.add_argument('--image_size',
default='112,112',
help='输入特征提取网络的图片大小')
parser.add_argument('--arcface_model',
default='./model/arcface, 0',
help='特征提取网络预训练模型路径')
parser.add_argument('--retina_model',
default='./model/R50',
help='人脸检测网络预训练模型路径')
parser.add_argument('--classification',
default='./model/mlp.pkl',
help='人脸识别分类器模型路径')
parser.add_argument('--gpu', default=0, type=int, help='GPU设备ID,-1代表使用CPU')
parser.add_argument('--flip', default=1, type=int, help='是否在训练时进行左右翻转相加操作')
parser.add_argument('--threshold',
default=.6,
type=float,
help='RetinaNet的人脸检测阈值')
parser.add_argument('--embedding_threshold',
default=.85,
type=float,
help='需要进行特征提取的人脸可信度阈值')
parser.add_argument('--scales',
type=float,
nargs='+',
help='RetinaNet的图像缩放系数',
default=[1.0])
return parser.parse_args()
def get_image_paths(facedir):
image_paths = []
if os.path.isdir(facedir):
images = os.listdir(facedir)
image_paths = [os.path.join(facedir, img) for img in images]
return image_paths
def get_dataset(path, has_class_directories=True):
dataset = []
path_exp = os.path.expanduser(path)
classes = [
path for path in os.listdir(path_exp)
if os.path.isdir(os.path.join(path_exp, path))
]
classes.sort()
nrof_classes = len(classes)
for i in range(nrof_classes):
class_name = classes[i]
facedir = os.path.join(path_exp, class_name)
image_paths = get_image_paths(facedir)
dataset.append(ImageName(class_name, image_paths))
return dataset
def get_image_paths_and_labels(dataset):
image_paths_flat = []
labels_flat = []
for item in dataset:
image_paths_flat += item.image_paths
labels_flat += [item.name] * len(item.image_paths)
# labels_flat.append(item.name)
return image_paths_flat, labels_flat
def load_data(image_paths):
nrof_samples = len(image_paths)
images = [cv2.imread(image_paths[i]) for i in range(nrof_samples)]
# for i in range(nrof_samples):
# img =
# images.append(img)
return images
def encode_image(image, quality=90):
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
return cv2.imencode('.jpg', image, encode_param)[1].tostring()
def draw_points(image, poi, margin=5, color=[255, 255, 0]):
for index in range(5):
image[poi[index, 1] - margin:poi[index, 1] + margin, poi[index, 0] -
margin:poi[index, 0] + margin] = color
def start_up_tools():
parser = argparse.ArgumentParser(description='Yolo-v3 Online Test')
# =================== General ARGS ====================
parser.add_argument('--max_frame_rate',
type=int,
help='Max frame rate',
default=25)
parser.add_argument('--address_list',
type=float,
nargs='+',
help='IP address of web camera',
default=['10.41.0.198', '10.41.0.199'])
parser.add_argument('--queue_buffer_size',
type=int,
help='MP Queue size',
default=12)
parser.add_argument('--config',
default='./model/tools.cfg',
help='Darknet model config')
parser.add_argument('--weights',
default='./model/tools.weights',
help='Darknet model weights')
parser.add_argument('--meta',
default='./model/tools.data',
help='Darknet model meta')
parser.add_argument('--threshold',
default=.9,
type=float,
help='Object detection threshold')
return parser.parse_args()
# Let's compare how fast the implementations are
def time_function(f, *args):
tic = time.time()
f(*args)
toc = time.time()
return toc - tic