-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathgenerate_anchor.py
153 lines (115 loc) · 4.08 KB
/
generate_anchor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import numpy as np
from numpy import zeros, concatenate, float32, tile, repeat, arange, exp
class AnchorConifg:
def __init__(self, *, stride, scales,
base_size=16, ratios=(1., ), dense_anchor=False):
self.stride = stride
self.scales = np.array(scales)
self.scales_shape = self.scales.shape[0]
self.base_size = base_size
self.ratios = np.array(ratios)
self.dense_anchor = dense_anchor
self.base_anchors = self._generate_anchors()
def _generate_anchors(self):
base_anchor = np.array([1, 1, self.base_size, self.base_size]) - 1
ratio_anchors = self._ratio_enum(base_anchor)
anchors = np.vstack([self._scale_enum(ratio_anchors[i, :])
for i in range(ratio_anchors.shape[0])])
if self.dense_anchor:
assert self.stride % 2 == 0
anchors2 = anchors.copy()
anchors2[:, :] += int(self.stride/2)
anchors = np.vstack((anchors, anchors2))
return anchors
def _whctrs(self, anchor):
"""
Return width, height, x center, and y center for an anchor (window).
"""
w = anchor[2] - anchor[0] + 1
h = anchor[3] - anchor[1] + 1
x_ctr = anchor[0] + 0.5 * (w - 1)
y_ctr = anchor[1] + 0.5 * (h - 1)
return w, h, x_ctr, y_ctr
def _mkanchors(self, ws, hs, x_ctr, y_ctr):
"""
Given a vector of widths (ws) and heights (hs) around a center
(x_ctr, y_ctr), output a set of anchors (windows).
"""
ws = ws[:, None]
hs = hs[:, None]
anchors = np.hstack((x_ctr - 0.5 * (ws - 1),
y_ctr - 0.5 * (hs - 1),
x_ctr + 0.5 * (ws - 1),
y_ctr + 0.5 * (hs - 1)))
return anchors
def _ratio_enum(self, anchor):
"""
Enumerate a set of anchors for each aspect ratio wrt an anchor.
"""
w, h, x_ctr, y_ctr = self._whctrs(anchor)
size = w * h
size_ratios = size / self.ratios
ws = np.round(np.sqrt(size_ratios))
hs = np.round(ws * self.ratios)
anchors = self._mkanchors(ws, hs, x_ctr, y_ctr)
return anchors
def _scale_enum(self, anchor):
"""
Enumerate a set of anchors for each scale wrt an anchor.
"""
w, h, x_ctr, y_ctr = self._whctrs(anchor)
ws = w * self.scales
hs = h * self.scales
anchors = self._mkanchors(ws, hs, x_ctr, y_ctr)
return anchors
def __repr__(self):
return f'Stride: {self.stride}'
anchor_config = [
AnchorConifg(stride=32, scales=(32, 16)),
AnchorConifg(stride=16, scales=(8, 4)),
# AnchorConifg(stride=8, scales=(2, 1)),
]
def generate_runtime_anchors(height, width, stride, base_anchors):
A = base_anchors.shape[0]
all_anchors = zeros((height*width, A, 4), dtype=float32)
rw = tile(arange(0, width*stride, stride),
height).reshape(-1, 1, 1)
rh = repeat(arange(0, height*stride, stride),
width).reshape(-1, 1, 1)
all_anchors += concatenate((rw, rh, rw, rh), axis=2)
all_anchors += base_anchors
return all_anchors
def generate_anchors_fpn(dense_anchor=False, cfg=anchor_config):
"""
Generate anchor (reference) windows by enumerating aspect ratios X
scales wrt a reference (0, 0, 15, 15) window.
"""
return sorted(cfg, key=lambda x: x.stride, reverse=True)
def nonlinear_pred(boxes, box_deltas):
if boxes.size:
ctr_x, ctr_y, widths, heights = boxes.T
widths -= ctr_x
heights -= ctr_y
widths += 1.0
heights += 1.0
dx, dy, dw, dh, _ = box_deltas.T
dx *= widths
dx += ctr_x
dx += 0.5 * widths
dy *= heights
dy += ctr_y
dy += 0.5 * heights
exp(dh, out=dh)
dh *= heights
dh -= 1.0
dh *= 0.5
exp(dw, out=dw)
dw *= widths
dw -= 1.0
dw *= 0.5
dx -= dw
dw += dw
dw += dx
dy -= dh
dh += dh
dh += dy