-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathwebuibatch.py
406 lines (367 loc) · 18.6 KB
/
webuibatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import contextlib
from datetime import datetime
import os
import random
import sys
import typing
import wave
import glob
from pathlib import Path
from tempfile import NamedTemporaryFile
import numpy as np
import requests
import torch
import torchaudio
from os.path import dirname, abspath
from modules import shared, ui
cuda = True
#check for mps
if torch.backends.mps.is_available():
mps_device = torch.device("mps")
x = torch.ones(1, device=mps_device)
cuda = False
sys.path.insert(0, str(Path("repositories/audiocraft")))
sys.path.insert(0, str(Path("repositories/musicgen_trainer")))
from train import train
from audiocraft.data.audio import audio_write
from audiocraft.data.audio_utils import convert_audio
from audiocraft.models import MusicGen
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
def my_get(url, **kwargs):
kwargs.setdefault('allow_redirects', True)
return requests.api.request('get', 'http://127.0.0.1/', **kwargs)
original_get = requests.get
requests.get = my_get
import gradio as gr
requests.get = original_get
MODEL = None
current_directory = dirname(abspath(__file__))
def load_model(version, DIRECTORY_NAME, FINETUNED_ON):
if version != "custom":
print("Loading model", version)
path=current_directory+"/models/" + version + "/"
if os.path.exists(path):
model = MusicGen.get_pretrained(directory=path,name=version)
else: model = MusicGen.get_pretrained(name=version)
else:
finetuned_dir =current_directory + "/models/" + DIRECTORY_NAME + "/" + "lm_final.pt"
model= MusicGen.get_pretrained(name=FINETUNED_ON)
model.lm.load_state_dict(torch.load(finetuned_dir))
model.name="custom"
return model
def set_seed(seed: int = 0):
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if seed <= 0:
seed = np.random.default_rng().integers(1, 2**32 - 1)
seed = np.uint32(seed).item()
assert 0 < seed < 2**32
original_seed = seed
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
if cuda:
torch.cuda.manual_seed_all(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
return original_seed
def generate_cmelody(descriptions: typing.List[str], melody_wavs: typing.Union[torch.Tensor, typing.List[typing.Optional[torch.Tensor]]],
msr: int, prompt: torch.Tensor, psr: int, MODEL, progress: bool = False) -> torch.Tensor:
if isinstance(melody_wavs, torch.Tensor):
if melody_wavs.dim() == 2:
melody_wavs = melody_wavs[None]
if melody_wavs.dim() != 3:
raise ValueError("melody_wavs should have a shape [B, C, T].")
melody_wavs = list(melody_wavs)
else:
for melody in melody_wavs:
if melody is not None:
assert melody.dim() == 2, "one melody in the list has the wrong number of dims."
melody_wavs = [
convert_audio(wav, msr, MODEL.sample_rate, MODEL.audio_channels)
if wav is not None else None
for wav in melody_wavs]
if prompt.dim() == 2:
prompt = prompt[None]
if prompt.dim() != 3:
raise ValueError("prompt should have 3 dimensions: [B, C, T] (C = 1).")
prompt = convert_audio(prompt, psr, MODEL.sample_rate, MODEL.audio_channels)
if descriptions is None:
descriptions = [None] * len(prompt)
attributes, prompt_tokens = MusicGen._prepare_tokens_and_attributes(MODEL, descriptions=descriptions, prompt=prompt, melody_wavs=melody_wavs)
assert prompt_tokens is not None
return MusicGen._generate_tokens(MODEL, attributes, prompt_tokens, progress)
def initial_generate(melody_boolean, MODEL, text, melody, msr, continue_file, duration, cf_cutoff, sc_text):
wav = None
if continue_file:
data_waveform, cfsr = (torchaudio.load(continue_file))
if cuda:
wav = data_waveform.cuda()
else:
wav = data_waveform.mps_device()
cf_len = 0
with contextlib.closing(wave.open(continue_file, 'r')) as f:
frames = f.getnframes()
rate = f.getframerate()
cf_len = frames / float(rate)
if wav.dim() == 2:
wav = wav[None]
wav = wav[:, :, int(-cfsr * min(29, cf_len, duration - 1, cf_cutoff)):]
new_chunk = None
if not melody_boolean:
if not sc_text:
new_chunk = MODEL.generate_continuation(wav, prompt_sample_rate=cfsr, progress=False)
else:
new_chunk = MODEL.generate_continuation(wav, descriptions=[text], prompt_sample_rate=cfsr, progress=False)
wav = new_chunk
else:
new_chunk = generate_cmelody([text], melody, msr, wav, cfsr, MODEL, progress=False)
wav = new_chunk
else:
if melody_boolean:
wav = MODEL.generate_with_chroma(
descriptions=[text],
melody_wavs=melody,
melody_sample_rate=msr,
progress=False
)
else:
wav = MODEL.generate(descriptions=[text], progress=False)
return wav
def generate_batch(model, text, melody, duration, topk, topp, temperature, cfg_coef, base_duration,
sliding_window_seconds, continue_file, cf_cutoff, sc_text, seed, directory_name,
finetuned_on, batch_mode, num_batches, infinite):
num_batches = int(num_batches) # Convert num_batches to an integer
if infinite:
while True:
generated_output = generate(model, text, melody, duration, topk, topp, temperature, cfg_coef,
base_duration, sliding_window_seconds, continue_file, cf_cutoff,
sc_text, seed, directory_name, finetuned_on)
else:
# Normal non-batch generation logic
generated_output = generate(model, text, melody, duration, topk, topp, temperature, cfg_coef,
base_duration, sliding_window_seconds, continue_file, cf_cutoff,
sc_text, seed, directory_name, finetuned_on)
output.value = generated_output
def generate(model, text, melody, duration, topk, topp, temperature, cfg_coef, base_duration,
sliding_window_seconds, continue_file, cf_cutoff, sc_text, seed, directory_name,finetuned_on):
global MODEL
if MODEL is None or MODEL.name != model:
MODEL = load_model(model,directory_name,finetuned_on)
final_length_seconds = duration
descriptions = text
topk = int(topk)
int_seed = int(seed)
cur_seed = set_seed(int_seed)
print("seed: " + str(cur_seed))
if duration > 30:
MODEL.set_generation_params(
use_sampling=True,
top_k=topk,
top_p=topp,
temperature=temperature,
cfg_coef=cfg_coef,
duration=base_duration,
)
else:
MODEL.set_generation_params(
use_sampling=True,
top_k=topk,
top_p=topp,
temperature=temperature,
cfg_coef=cfg_coef,
duration=duration,
)
iterations_required = int(final_length_seconds / sliding_window_seconds)
print(f"Iterations required: {iterations_required}")
sr = MODEL.sample_rate
print(f"Sample rate: {sr}")
msr = None
wav = None # wav shape will be [1, 1, sr * seconds]
melody_boolean = False
if melody:
msr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t().unsqueeze(0)
print(melody.shape)
if melody.dim() == 2:
melody = melody[None]
melody = melody[..., :int(msr * MODEL.lm.cfg.dataset.segment_duration)]
melody_boolean = True
if (duration > 30):
for i in range(iterations_required):
print(f"Generating {i + 1}/{iterations_required}")
if i == 0:
wav = initial_generate(melody_boolean, MODEL, text, melody, msr, continue_file, base_duration, cf_cutoff, sc_text)
wav = wav[:, :, :sr * sliding_window_seconds]
else:
new_chunk = None
previous_chunk = wav[:, :, -sr * (base_duration - sliding_window_seconds):]
if continue_file:
if not sc_text:
new_chunk = MODEL.generate_continuation(previous_chunk, prompt_sample_rate=sr, progress=False)
else:
new_chunk = MODEL.generate_continuation(previous_chunk, descriptions=[text], prompt_sample_rate=sr, progress=False)
else:
new_chunk = MODEL.generate_continuation(previous_chunk, descriptions=[text], prompt_sample_rate=sr, progress=False)
wav = torch.cat((wav, new_chunk[:, :, -sr * sliding_window_seconds:]), dim=2)
else:
wav = initial_generate(melody_boolean, MODEL, text, melody, msr, continue_file, duration, cf_cutoff, sc_text)
print(f"Final length: {wav.shape[2] / sr}s")
output = wav.detach().cpu().float()[0]
now = datetime.now()
d = dirname(abspath(__file__))
file_name = d + "/results/" + now.strftime("%Y%m%d_%H%M%S") + "-" + str(cur_seed) + ".wav"
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(file_name, output, MODEL.sample_rate, strategy="loudness", loudness_headroom_db=16,
add_suffix=False, loudness_compressor=True)
print(file_name)
set_seed(-1)
return file_name
def get_datasets(path: str, ext: str):
return ['None'] + glob(current_directory)
def train_local(dataset_path: str,
model_id: str,
lr: float,
epochs: int,
use_wandb: bool,
save_step: int = None,):
if save_step==0:
save_step=None
wandb : int
if use_wandb:
wandb=1
else:
wandb=0
train(
dataset_path=dataset_path,
model_id=model_id,
lr=lr,
epochs=int(epochs),
use_wandb=wandb,
save_step=save_step,
)
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Tab("Inference"):
gr.Markdown("""# MusicGen Inference""")
with gr.Row():
with gr.Column():
with gr.Row():
batch_mode = gr.Checkbox(label="Batch Mode", value=False, interactive=True)
num_batches = gr.Number(label="Number of Batches", value=5, interactive=True)
infinite_checkbox = gr.Checkbox(label="Infinite", value=False, interactive=True)
text = gr.Text(label="Input Text", interactive=True)
melody = gr.Audio(source="upload", type="numpy", label="Melody Condition (optional) SUPPORTS MELODY ONLY", interactive=True)
continue_file = gr.Audio(source="upload", type="filepath",
label="Song to continue (optional) SUPPORTS ALL MODELS", interactive=True)
with gr.Row():
model = gr.Radio(["melody", "medium", "small", "large", "custom"], label="Model", value="small", interactive=True)
directory_name= gr.Text(label="Finetuned DIRECTORY_NAME", interactive=True)
finetuned_on = gr.Radio(["small", "medium", "large"], label="FINETUNED_ON model", value="small", interactive=True)
with gr.Row():
duration = gr.Slider(minimum=1, maximum=300, value=30,step=1, label="Duration", interactive=True)
base_duration = gr.Slider(minimum=1, maximum=30, value=30, step=1, label="Base duration", interactive=True)
sliding_window_seconds = gr.Slider(minimum=1, maximum=30, value=15, step=1, label="Sliding window", interactive=True)
cf_cutoff = gr.Slider(minimum=1, maximum=30, value=15, step=1, label="Continuing song cutoff", interactive=True)
with gr.Row():
topk = gr.Number(label="Top-k", value=250, interactive=True)
topp = gr.Number(label="Top-p", value=0, interactive=True)
temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
with gr.Row():
sc_text = gr.Checkbox(label="Use text for song continuation.", value=True)
seed = gr.Number(label="seed", value=-1, interactive=True)
with gr.Row():
submit = gr.Button("Submit")
with gr.Row():
output = gr.Audio(label="Generated Music", type="filepath")
submit.click(generate_batch, inputs=[model, text, melody, duration, topk, topp, temperature,
cfg_coef, base_duration, sliding_window_seconds, continue_file,
cf_cutoff, sc_text, seed, directory_name, finetuned_on,
batch_mode, num_batches, infinite_checkbox],
outputs=[output])
gr.Examples(
fn=generate,
examples=[
[
"An 80s driving pop song with heavy drums and synth pads in the background",
"./repositories/audiocraft/assets/bach.mp3",
"melody"
],
[
"A cheerful country song with acoustic guitars",
"./repositories/audiocraft/assets/bolero_ravel.mp3",
"melody"
],
[
"90s rock song with electric guitar and heavy drums",
None,
"medium"
],
[
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
"./repositories/audiocraft/assets/bach.mp3",
"melody"
],
[
"lofi slow bpm electro chill with organic samples",
None,
"medium",
],
],
inputs=[text, melody, model],
outputs=[output]
)
gr.Markdown(
"""
This is a webui for MusicGen with 30+ second generation support.
Models
1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only.
2. Small -- a 300M transformer decoder conditioned on text only.
3. Medium -- a 1.5B transformer decoder conditioned on text only.
4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.) - recommended for continuing songs
When the optional melody conditioning wav is provided, the model will extract
a broad melody and try to follow it in the generated samples. Only the first chunk of the song will
be generated with melody conditioning, the others will just continue on the first chunk.
Base duration of 30 seconds is recommended.
Sliding window of 10/15/20 seconds is recommended.
When continuing songs, a continuing song cutoff of 5 seconds gives good results. Continuing song cutoff - number of seconds to be taken from the end of the continuing song.
Gradio analytics are disabled.
"""
)
with gr.Tab("Training"):
with gr.Row():
with gr.Column():
dataset_path = gr.Dropdown(choices=glob.glob(current_directory+"/training/datasets/*/"), value='None',
label='Dataset', info='The dataset path to use for training.', interactive=True)
ui.create_refresh_button(dataset_path, lambda: None,
lambda: {'choices': glob.glob(current_directory+"/training/datasets/*/")},
'refresh-button')
with gr.Column():
lr = gr.Number(label="Learning rate", value=0.0001, interactive=True)
epochs = gr.Number(label="Epoch count", value=5, interactive=True)
use_wandb = gr.Checkbox(label="Use WanDB", value=False, interactive=True)
save_step = gr.Number(label="Number of steps after which to save a checkpoint. 0 is treated as none.", value=0, interactive=True)
with gr.Row():
model_id = gr.Radio(["small", "medium", "large"], label="Model", value="small", interactive=True)
train_button = gr.Button(label="Start training")
train_button.click(train_local, inputs=[dataset_path,model_id, lr, epochs, use_wandb, save_step], outputs=[output])
gr.Markdown(
"""
# Training
Model gets saved to models/ as `lm_final.pt`
### Using the finetuned model
1) Place it in models/DIRECTORY_NAME/
2) In the Inference tab choose `custom` as the model and enter DIRECTORY_NAME into the input field.
3) In the Inference tab choose the model it was finetuned on
### Options
- `dataset_path` path to your dataset with WAV and TXT pairs.
- `model_id - MusicGen model to use. Can be `small`/`medium`/`large`. Default: `small` - model it will be finetuned on
- `lr`: Float, learning rate. Default: `0.0001`/`1e-4`
- `epochs`: Integer, epoch count. Default: `5`
- `use_wandb`: Integer, `1` to enable wandb, `0` to disable it. Default: `0` = Disabled
- `save_step`: Integer, amount of steps to save a checkpoint. Default: None
Gradio analytics are disabled.
"""
)
if shared.args.listen:
demo.launch(share=shared.args.share, server_name=shared.args.listen_host or '0.0.0.0', server_port=shared.args.listen_port, inbrowser=shared.args.auto_launch)
else:
demo.launch(share=shared.args.share, server_port=shared.args.listen_port, inbrowser=shared.args.auto_launch)