-
-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathOneRealityMemory.py
499 lines (406 loc) · 15.3 KB
/
OneRealityMemory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import speech_recognition as sr
import os
import sounddevice as sd
import soundfile as sf
import re
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from tuya_connector import TuyaOpenAPI
import string
from AppOpener import open as start, close as end
import json
from vectordb import Memory
from dotenv import load_dotenv
import random
from requests_toolbelt.multipart.encoder import MultipartEncoder
import requests
from datetime import datetime
import whisperx
import pyautogui
import time
import subprocess
subprocess.Popen("start cmd /k python vits-simple-api-onereality/app.py", shell=True)
###
# Set to True if you want to use tuya
tuya = True
###
# Load env variables
load_dotenv()
# Language
lang_code = os.getenv("LANGUAGE")
# Initialize memory
memory = Memory()
with open("conversation.jsonl", "r", encoding="utf-8") as f:
conversation_data = [json.dumps(json.loads(line)) for line in f]
memory.save(conversation_data)
# ExLlamaV2
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from exllamav2 import (
ExLlamaV2,
ExLlamaV2Config,
ExLlamaV2Cache,
ExLlamaV2Tokenizer,
)
from exllamav2.generator import ExLlamaV2StreamingGenerator, ExLlamaV2Sampler
# Initialize model and cache
model_directory = os.getenv("LLM_PATH")
config = ExLlamaV2Config()
config.model_dir = model_directory
config.prepare()
ExLlamatokenizer = ExLlamaV2Tokenizer(config)
model = ExLlamaV2(config)
print("Loading model: " + model_directory)
model.load([16, 24])
cache = ExLlamaV2Cache(model)
# Initialize generator
generator = ExLlamaV2StreamingGenerator(model, cache, ExLlamatokenizer)
generator.set_stop_conditions(['"}', "}", "'}"])
# Settings
settings = ExLlamaV2Sampler.Settings()
settings.temperature = 0.85
settings.top_k = 50
settings.top_p = 0.8
settings.token_repetition_penalty = 1.15
settings.disallow_tokens(ExLlamatokenizer, [ExLlamatokenizer.eos_token_id])
max_new_tokens = 1000
# WhisperX
device = "cuda"
audio_file = r"temp.wav"
batch_size = 12 # reduce if low on GPU mem
compute_type = "int8" # change to "int8" if low on GPU mem (may reduce accuracy)
language = lang_code
model = os.getenv("WHISPERX_MODEL")
whisper_model = whisperx.load_model(
"medium",
device,
language=language,
compute_type=compute_type,
asr_options={
"initial_prompt": "A chat between a user and an artificial intelligence assistant named M.I.T.S.U.H.A."
},
)
# VITS api
abs_path = os.path.dirname(__file__)
base = "http://127.0.0.1:23456"
if tuya == True:
# set up Tuya API credentials
ACCESS_ID = os.getenv("TUYA_ID")
ACCESS_KEY = os.getenv("TUYA_SECRET")
API_ENDPOINT = os.getenv("TUYA_ENDPOINT")
# set up microphone and speech recognition
r = sr.Recognizer()
mic = sr.Microphone()
r.energy_threshold = 1500
# set up NLI RTE transformers model
tokenizer = AutoTokenizer.from_pretrained(os.getenv("NLI_RTE_TRANSFORMER"))
model = AutoModelForSequenceClassification.from_pretrained(
os.getenv("NLI_RTE_TRANSFORMER")
)
# set up Llama model
lore = os.getenv("LORE")
print(
"""
_____ ______ _ _
/ ___ \ (_____ \ | (_)_
| | | |____ ____ _____) ) ____ ____| |_| |_ _ _
| | | | _ \ / _ |_____ ( / _ ) _ | | | _) | | |
| |___| | | | ( (/ / | ( (/ ( ( | | | | |_| |_| |
\_____/|_| |_|\____) |_|\____)_||_|_|_|\___)__ |
(____/
"""
)
def typewriter_effect(text, delay=0.03):
for char in text:
print(char, end="", flush=True)
time.sleep(delay)
text = """ Bridging the real and virtual worlds
{:^50}
""".format(
"[PROJECT M.I.T.S.U.H.A.]"
)
typewriter_effect(text)
# tts function
def voice_vits(
text, id=0, format="wav", lang=lang_code, length=1, noise=0.667, noisew=0.8, max=50
):
fields = {
"text": text,
"id": str(id),
"format": format,
"lang": lang,
"length": str(length),
"noise": str(noise),
"noisew": str(noisew),
"max": str(max),
}
boundary = "----VoiceConversionFormBoundary" + "".join(
random.sample(string.ascii_letters + string.digits, 16)
)
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base}/voice"
res = requests.post(url=url, data=m, headers=headers)
path = f"{abs_path}/out.wav"
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
# define function to check if user has said "bye", "goodbye", or "see you"
def check_goodbye(transcript):
goodbye_words = ["bye", "goodbye", "see you"]
for word in goodbye_words:
if word in transcript.casefold():
return True
return False
def test_entailment(text1, text2):
batch = tokenizer(text1, text2, return_tensors="pt").to(model.device)
with torch.no_grad():
proba = torch.softmax(model(**batch).logits, -1)
return proba.cpu().numpy()[0, model.config.label2id["ENTAILMENT"]]
def test_equivalence(text1, text2):
return test_entailment(text1, text2) * test_entailment(text2, text1)
def replace_device(sentence, word):
return sentence.replace("[device]", word)
def replace_app(sentence, word):
return sentence.replace("[app]", word)
def keep_sentence_with_word(text, word):
sentences = text.split(".")
filtered_sentences = [
sentence.strip() + "." for sentence in sentences if word in sentence
]
result = " ".join(filtered_sentences)
return result
def keep_sentence_with_word(text, word):
sentences = re.split(r"[.,!?]", text)
filtered_sentences = [
sentence.strip() + punct
for sentence, punct in zip(sentences, re.findall(r"[.,!?]", text))
if word in sentence
]
result = " ".join(filtered_sentences)
return result
while True:
print("Speak now!")
with mic as source:
audio = r.listen(source, timeout=None)
now = datetime.now()
date = now.strftime("%m/%d/%Y")
time_2 = now.strftime("%H:%M:%S")
try:
test_text = r.recognize_sphinx(audio)
if len(test_text) == 0:
continue
except sr.UnknownValueError:
continue
with open("temp.wav", "wb") as f:
f.write(audio.get_wav_data())
audio = whisperx.load_audio(audio_file)
result = whisper_model.transcribe(audio, batch_size=batch_size)
try:
trans = result["segments"][0]["text"]
if len(trans) == 0:
continue
except IndexError:
continue
text = trans
new_line = {"role": "User", "date": date, "time": time_2, "content": text}
print("You:" + text)
with open(r"conversation.jsonl", "a", encoding="UTF-8") as c:
c.write("\n" + json.dumps(new_line, ensure_ascii=False))
devices = [os.getenv("DEVICE_1"), os.getenv("DEVICE_2")]
if tuya == True:
sentence = "Activate [device]."
input_sentence = trans.lower()
for word in devices:
if word in input_sentence:
modified_sentence = replace_device(sentence, word)
input_sentence = keep_sentence_with_word(input_sentence, word)
input_sentence = input_sentence.translate(
str.maketrans("", "", string.punctuation)
)
similarity = test_equivalence(modified_sentence, input_sentence)
if similarity >= 0.5:
openapi = TuyaOpenAPI(API_ENDPOINT, ACCESS_ID, ACCESS_KEY)
openapi.connect()
if word == os.getenv("DEVICE_1"):
commands = {"commands": [{"code": "switch_1", "value": True}]}
openapi.post(os.getenv("DEVICE_1_ID"), commands)
if word == os.getenv("DEVICE_2"):
commands = {"commands": [{"code": "switch_1", "value": True}]}
openapi.post(os.getenv("DEVICE_2_ID"), commands)
elif similarity < 0.001:
openapi = TuyaOpenAPI(API_ENDPOINT, ACCESS_ID, ACCESS_KEY)
openapi.connect()
if word == os.getenv("DEVICE_1"):
commands = {"commands": [{"code": "switch_1", "value": False}]}
openapi.post(os.getenv("DEVICE_1_ID"), commands)
if word == os.getenv("DEVICE_2"):
commands = {"commands": [{"code": "switch_1", "value": False}]}
openapi.post(os.getenv("DEVICE_2_ID"), commands)
else:
pass
apps = [
"youtube",
"brave",
"discord",
"spotify",
"explorer",
"epic games launcher",
"tower of fantasy",
"steam",
"minecraft",
"clip studio paint",
"premiere pro",
"media encoder",
"photoshop",
"audacity",
"obs",
"vscode",
"terminal",
"synapse",
"via",
]
sentence = "Activate [app]."
input_sentence = trans.lower()
for word in apps:
if word in input_sentence:
modified_sentence = replace_app(sentence, word)
input_sentence = keep_sentence_with_word(input_sentence, word)
input_sentence = input_sentence.translate(
str.maketrans("", "", string.punctuation)
)
similarity = test_equivalence(modified_sentence, input_sentence)
if similarity >= 0.5:
start(word, match_closest=True)
elif similarity < 0.001:
end(word, match_closest=True)
else:
pass
query = f"""{text}"""
results = memory.search(query, top_n=2)
extracted_dicts = [result["chunk"] for result in results]
line1 = str(extracted_dicts[0])
line2 = str(extracted_dicts[1])
# Read the file and store the lines in the list
with open("conversation.jsonl", "r", encoding="UTF-8") as file:
lines = file.readlines()
lines = [line.strip() for line in lines]
lines = "\n".join(lines)
lines = lines.splitlines()
# Check if there are at least 5 lines in the file (6 lines to read and 1 line to exclude)
if len(lines) >= 5:
# Extract the last 5 lines (excluding the last line) into a string
last_six_lines = "\n".join(lines[-5:-1])
# Iterate over the lines to check
if line1 not in last_six_lines:
# If not found in last_six_lines, search for it in the entire file
found = False
for i, line in enumerate(lines):
if line == line1:
# If found, append line_to_check and the line directly after/before it to the top of last_six_lines
found = True
if '''{"role": "User"''' in line:
last_six_lines = (
line1 + "\n" + str(lines[i + 1]) + "\n" + last_six_lines
)
break
elif '''{"role": "M.I.T.S.U.H.A."''' in line:
last_six_lines = (
str(lines[i - 1]) + "\n" + line1 + "\n" + last_six_lines
)
break
if not found:
# If still not found, append only line_to_check at the top without the line directly after it
last_six_lines = line1 + "\n" + last_six_lines
if line2 not in last_six_lines:
# If not found in last_six_lines, search for it in the entire file
found = False
for i, line in enumerate(lines):
if line == line2:
# If found, append line_to_check and the line directly after/before it to the top of last_six_lines
found = True
if '''{"role": "User"''' in line:
last_six_lines = (
line2 + "\n" + str(lines[i + 1]) + "\n" + last_six_lines
)
break
elif '''{"role": "M.I.T.S.U.H.A."''' in line:
last_six_lines = (
str(lines[i - 1]) + "\n" + line2 + "\n" + last_six_lines
)
break
if not found:
# If still not found, append only line_to_check at the top without the line directly after it
last_six_lines = line2 + "\n" + last_six_lines
else:
last_six_lines = lines
memory.save(f"""["{new_line}"]""")
now = datetime.now()
date = now.strftime("%m/%d/%Y")
time_1 = now.strftime("%H:%M:%S")
prompt = (
lore
+ "\n\n"
+ str(last_six_lines)
+ str(new_line)
+ f'\n{{"role": "M.I.T.S.U.H.A.", "date": "{date}", "time": "{time_1}", "content": "'
)
prompt = str(prompt)
# generate a response (takes several seconds)
input_ids = ExLlamatokenizer.encode(str(prompt))
sys.stdout.flush()
generator.begin_stream(input_ids, settings)
generated_tokens = 0
emotion_hotkey_map = {
"(wave)": "6",
"(thumbs-up)": "7",
"(nodding)": "8",
"(shaking head)": "9",
"(clap)": "0",
}
print("M.I.T.S.U.H.A.: ", end="")
generated_text = "" # Initialize an empty string to store the generated text
while True:
chunk, eos, _ = generator.stream()
generated_tokens += 1
generated_text += chunk # Append each chunk to the generated_text variable
found_emotion = False
for emotion, hotkey in emotion_hotkey_map.items():
if chunk == emotion:
found_emotion = True
break
if not found_emotion:
print(chunk, end="")
sys.stdout.flush()
if eos or generated_tokens == max_new_tokens:
break
print()
response = generated_text
new_line = {
"role": "M.I.T.S.U.H.A.",
"date": date,
"time": time_1,
"content": response,
}
with open(r"conversation.jsonl", "a", encoding="UTF-8") as c:
c.write("\n" + json.dumps(new_line, ensure_ascii=False))
memory.save(f"""["{new_line}"]""")
for emotion, hotkey in emotion_hotkey_map.items():
if emotion in response.lower():
response = re.sub(re.escape(emotion), "", response, flags=re.IGNORECASE)
pyautogui.hotkey("ctrl", "alt", hotkey)
break
voice_vits(text=response, lang=lang_code)
filename = "out.wav"
# Extract data and sampling rate from file
data, fs = sf.read(filename, dtype="float32")
# sd.default.device = "Speakers (Realtek(R) Audio), MME"
# sd.default.device = "Headphones (AirPods Pro), MME"
sd.default.device = "CABLE Input (VB-Audio Virtual C, MME"
sd.play(data, fs)
status = sd.wait() # Wait until file is done playing
if check_goodbye(trans):
break
else:
continue