This algorithm has been written a million times. So why maintain our own?
- Keep Javelin dependency free
- Limit number of features to stay small and fast
- Easy to integrate with your existing ArrayBuffer-based protocol.
- Includes
boolean
,string8
,string16
,uint8
,uint16
,uint32
,int8
,int16
,int32
,float32
,float64
. - Deeply nested objects, e.g.
{ stats: { strength: uint16 } }
- Deeply nested arrays, e.g.
{ order: arrayOf(arrayOf({ name: string16 })) }
import {
arrayOf,
createModel,
decode,
encode,
string8,
uint8,
} from "@javelin/pack"
const person = {
name: string8,
age: uint8,
}
const model = createModel({
...person,
children: arrayOf(person),
})
const data = {
name: "Ben",
age: 64,
children: [
{ name: "Chantel", age: 23 },
{ name: "Alyssa", age: 21 },
],
}
const encoded = encode(data, model) // <08 00 28 e7 ...>
const decoded = decode(encoded, model) // { name: "Ben", ... }
- Cycles (e.g.
person.children = arrayOf(person)
)
yarn perf
will run performance tests. Example perf
output:
encode @60hz (bigger is better)
pack 9172.586162591406
msgpack 8341.438421156548
json 8812.036962151693
decode @60hz (bigger is better)
pack 13507.305450145765
msgpack 12591.815349590674
json 8160.358308042964
size (smaller is better)
pack 47
msgpack 117
json 166