diff --git a/11-SVM/07-RBF-Kernel/07-RBF-Kernel.ipynb b/11-SVM/07-RBF-Kernel/07-RBF-Kernel.ipynb deleted file mode 100644 index df2e6da..0000000 --- a/11-SVM/07-RBF-Kernel/07-RBF-Kernel.ipynb +++ /dev/null @@ -1,332 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## RBF 核" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2wXHWd5/H3hxB276KViGAMN7kbrEoxwyhPcwsppVYR\n5GnKTZzZpUBXqV2tLLXjOLpTlJl1i6VwpyY7luMuOygTGUqcGqEyJWDUKAPRKWZxcUkEAghIBCxy\njcSnREZSQ4jf/aPPhe5OP5zuPn3O73R/XlW3bvd5yP1x6D7f38P39zuKCMzMzBYdVXUBzMwsLQ4M\nZmbWwoHBzMxaODCYmVkLBwYzM2vhwGBmZi0cGMzMrIUDg5mZtXBgMDOzFkdXXYBhHH/88bFmzZqq\ni2FmVis7d+78aUSc0O+4WgaGNWvWsGPHjqqLYWZWK5J+mOc4dyWZmVkLBwYzM2vhwGBmZi0cGMzM\nrEUhgUHSTZL2SXqky/73Stol6WFJ35Z0WtO+Z7LtD0ryiLKZWcWKajF8Hriox/6ngbdFxJuATwCb\n2/afGxGnR8R8QeUxM7MhFZKuGhH3SFrTY/+3m97eB6wq4u+amVnxqpjH8AHg603vA7hb0mHgLyOi\nvTVhNXHHAwt88s4n+NH+g5y4fIarLjyZ9WfMVl0sMxtQqYFB0rk0AsM5TZvPiYgFSa8D7pL0eETc\n0+HcDcAGgLm5uVLKa/nd8cACf3zbwxw8dBiAhf0H+ePbHgZwcDCrmdKykiSdCtwIrIuIny1uj4iF\n7Pc+4HbgrE7nR8TmiJiPiPkTTug7o9tK9sk7n3g5KCw6eOgwn7zziYpKZGbDKiUwSJoDbgPeFxHf\nb9p+rKRXL74GLgA6ZjZZ2n60/+BA280sXYV0JUm6BXg7cLykPcB/A5YCRMQNwNXAa4HPSAJ4KctA\nWgHcnm07GvhiRHyjiDJZQ1n9/icun2GhQxA4cflM4X/LzMarqKyky/vs/yDwwQ7bnwJOO/IMK0KZ\n/f5XXXhyy98CmFm6hKsuPLnQv2Nm4+eZzxOszH7/9WfM8qe/+yZml88gYHb5DH/6u2/ywLNZDdVy\n2W3Lp+x+//VnzDoQmE0AtxgmWLf+fff7m1kvDgwT7KoLT2Zm6ZKWbe73N7N+3JU0wRa7dTwb2cwG\n4cAw4dzvb2aDcleSmZm1cGAwM7MWDgxmZtbCgcHMzFo4MJiZWQtnJU04PzzHzAblwDDB/PAcMxuG\nA8ME67WI3qQHhuaW0rKZpUiw/4VDbjWZ5eDAMMGm9eE57S2l/QcPvbzPrSaz/jz4PMGmdRG9Ti2l\nZn7kqFlvhQQGSTdJ2iep42M51XCdpN2Sdkk6s2nfRZKeyPZtLKI81lDkInp3PLDAWzd9k5M2fo23\nbvomdzywUFQxC5enRVRUq6lO18Usr6JaDJ8HLuqx/2JgbfazAfgsgKQlwPXZ/lOAyyWdUlCZpl5R\nD89Z7JpZ2H+Q4JXumFRvgnlaREW0mup2XczyKurRnvdIWtPjkHXAFyIigPskLZe0ElgD7M4e8Ymk\nW7Njv1dEuayYRfTqNojd6TGjzUZZerx5UPsoicMRLftTvi5meZU1+DwLPNv0fk+2rdP2N3f6ByRt\noNHaYG5ubjyltI66dbss7D/ISRu/llymT/ty40VlJbUParcHhUWTPrhvk682WUkRsRnYDDA/P9/5\nG2kDyzMB7sTlMyx0udk1d6FAOpk+41huvN+g9qJJH9y3yVdWVtICsLrp/apsW7ftVoK8feSdBrHb\nTUOmT96WwLm/ccKYS3IkD4JbkcoKDFuB92fZSWcDByJiL3A/sFbSSZKOAS7LjrUS9Bo7aNY+iN3N\npHeh5G0JfOvxn4y5JK08CG5FKypd9Rbg/wInS9oj6QOSrpR0ZXbINuApYDfwOeA/AUTES8CHgDuB\nx4AtEfFoEWWy/gaZALf+jFnu3fgOnt70O8x2uUEGTHRtNU/LCcoPkHkDvFleRWUlXd5nfwC/32Xf\nNhqBw0rWbeygX824V9ZPiuMNRWkf1O6UlQTljzFM6wx3Gx/PfJ5iw06Aa+5a6mSSa6vNLadPXXpa\nYRMIRzGtM9xtfBwYptgoE+AWb5DdxhymobZa1ATCURU5w90MapSuauMxalrnsN1Rk2IcabHDlAHw\nczesMA4MNpJO4w2urY5HrzknKQQomxwODDaSKmqr0/hUOj90ycrkwGAjK7O2OuoNsq5BpW7rVVm9\nOTBYrYxyg0y51t0vYDkl1crkrCSrlV4L+vWT6kSwPDOXnZJqZXJgmEBlrZtTxfo83W6EysrTS6q1\n7jwByympViYHhoQUcaMta92cqtbnuerCkzvOnQjoW/NPtdadJ2ClMmfCpoMDQyKKutGW1V1SVbfM\n+jNm6bbmer+af6q17rwBq3nW9b0b3+GgYGPjwJCIom60vfrgi+z2qbJbpttSHP1q/qnWulMNWDa9\nnJWUiKJutN1mIotXBmiLyMapcsbzKJPqUpwI5pnLlhoHhkQUdaPtdNMUHNH9MmoOfJUznsu6kZY5\n5yHFgGXTy4GhJP1uMkXdaDvdNLulco7S7VN1LXfcN9KU5zyYjZuiywPNB/pHpIuA/wUsAW6MiE1t\n+68C3pu9PRr4TeCEiPi5pGeA54HDwEsRMd/v783Pz8eOHTtGLndZ2m8y0Ljpt/dvj6uG+tZN3+wY\nHGaXz3DvxneM/O9PIl8zm0SSdua5x47cYpC0BLgeeCewB7hf0taI+N7iMRHxSeCT2fHvAj4aET9v\n+mfOjYifjlqWVOWdrTuuWrAXuhtcqnMezMpQRFbSWcDuiHgqIl4EbgXW9Tj+cuCWAv5ubVR9k0k1\nGydlqc55MCtDEWMMs8CzTe/3AG/udKCkfwFcROM5z4sCuFvSYeAvI2JzAWVKSgrPLPDg5mDcyrJp\nVvbg87uAe9u6kc6JiAVJrwPukvR4RNzTfqKkDcAGgLm5uXJKWxDfZOpn2MH1uq7eatasiMCwAKxu\ner8q29bJZbR1I0XEQvZ7n6TbaXRNHREYspbEZmgMPo9e7PJUncFjwxm0leVMJpsURQSG+4G1kk6i\nERAuA97TfpCkZcDbgH/XtO1Y4KiIeD57fQFwbQFlqky3GqO7ciafn5lgk2LkwBARL0n6EHAnjXTV\nmyLiUUlXZvtvyA59N/B3EfGrptNXALdLWizLFyPiG6OWqSquMVZs1xbYfi0c2APLVsF5V8Opl5b2\n56tOMjArSiFjDBGxDdjWtu2GtvefBz7ftu0p4LQiypAC1xgrtGsLfOXDcCi7CR94tvEeSgsOKSQZ\nmBXBi+gVyDXGCm2/9pWgsOjQwcb2kngxPJsUDgwFcu57hQ7sGWz7GHi+iE0Kr5VUIKelVmjZqkb3\nUaftJXKSwRSpeExrnBwYClR1WupU59Cfd3XrGAPA0pnGdrOiJTCmNU6FLKJXtrotoleGvAv1TbQJ\nrsFZYj79xi4t1NXw0UeK+zsFf6ZLW0TP0uCMKBpfGAcCK0MZY1oVtko8+DwhnBFlVqJuY1dFjmlV\nmGnnwDAhnBFVL3c8sFDoM7itZOdd3RjDalb0mFaFmXYODBPCOfT1sTgetLD/IMErM+QdHGrk1Evh\nXdc1xhRQ4/e7riu2i6eMVkkXHmOYEFVnRFl+Hg+aEOMe06ow086BYYI4h74ePB5kuSwGnQoy7RwY\nzErmNZUst4oy7TzGUCAPKOawa0sjB/ya5Y3fu7ZUXaLSeTzIUucJbgXxBLMc2vOyAZYcA8e8Cg7+\nYqompRU9S32qZ71bbnknuDkwFOStm77ZsXtgicSvI/xlhe6zRZstnSk+u2MC9Lrx17pS4tnqpcob\nGArpSpJ0kaQnJO2WtLHD/rdLOiDpwezn6rzn1kW3gcPDEU5JXJQn/7rkpbLroF96a68sp6QttiAP\nPAvEKzN7p7B7MTUjBwZJS4DrgYuBU4DLJZ3S4dB/iIjTs59rBzw3eXkGDmvxZR2nvPnXJS6VXQf9\nbvy1zXJK4Bka1lkRLYazgN0R8VREvAjcCqwr4dxS9RtY7jSg2EnyX9Zx6jRbtJOSl8pOXbfPzML+\ng7x10zdZNrO04/7ks5wSeIaGdVZEYJgFmjuO92Tb2r1F0i5JX5f0WwOeW6k8M1XbH9KypPEc6yMk\n/2Udp/bZojPHwVFtNzUvlX2EXp+Zhf0H+dWLL7H0qNbP29KjxAsvvpR2hlyFM3utt7LSVb8LzEXE\nqcD/Bu4Y9B+QtEHSDkk7fvKTnxRewF7y9uGuP2OWeze+g6c3/Q6fuvQ0pyR2cuqljWWJr9kPH3sa\n1n9mvMsKTIB+rdFDh4NX/fOjX66ULJ9ZCoJfvHAo7fGtMtYbsqEUMcFtAVjd9H5Vtu1lEfHLptfb\nJH1G0vF5zm06bzOwGRpZSQWUO7dh+nC9REVOXiq7r+bPUqfMN4D9LxzigasvABoZcvsPHmrZn+SS\nGxXO7LXeiggM9wNrJZ1E46Z+GfCe5gMkvR54LiJC0lk0Wio/A/b3OzcFw85U9RIVVpTFz1K3tOjm\nz2K34NFte6VcMUjSyF1JEfES8CHgTuAxYEtEPCrpSklXZof9G+ARSQ8B1wGXRUPHc0ctU9E8U9VS\nkeez2G18q9t2s3aFrJUUEduAbW3bbmh6/RfAX+Q9NzXuFrJU5PksHu4yabXbdrN2XkQvJ3cLWSr6\nfRZnu3R9zk5zRpwNxIvomU0Yd33aqNxiMJsw7vq0UTkwmE0gd33aKBwY+vByxmaj8XeofhwYemhf\nznhxBingD7ZZDv4O1ZMHn3uo7XLGZonwd6ie3GLoobbLGZsNYJxdPf4O1dNUBYZBvwB+aLtNunF3\n9fg7VE9T05WUZ+nsds4Ht0k37q4ef4fqaWoCwzBfgPZnLMwun6nHc3TNchp3V4+/Q/U0NV1Jw34B\nnA9uk6yMrh5/h+pnaloM3T7o7uu0adatq+fc3zih56NsK7VrC3z6jXDN8sbvXVuqLtHEmZrA4L5O\nsyN16ur5vd+e5Us7FwYajyvNri3wlQ/DgWeBaPz+yofTCg4TELgUNVyKd35+Pnbs2DHwef/1joe5\n5TvPcjiCJRKXv3k1/339m8ZQQrP66vYwoNnlM9y78R0VlKjJp9+YBYU2y1Y3HhlbtcXAdajp+i2d\nSeaRtZJ2RsR8v+MKaTFIukjSE5J2S9rYYf97Je2S9LCkb0s6rWnfM9n2ByUNfrfP6Y4HFvjSzoWX\n16Q/HMGXdi4MXQu644GFdJva024CamxVSnruwYE9g20v2/ZrW4MCNN5vv7aa8gxp5MAgaQlwPXAx\ncApwuaRT2g57GnhbRLwJ+ATZs5ubnBsRp+eJZMMqMi1vmNTXqVfWzboOXQ2JS3o8btmqwbaXLfXA\nlVMRLYazgN0R8VREvAjcCqxrPiAivh0Rv8je3geU/n+xyFqQp/kPqMyb9YTU2KqU9HjceVc3umaa\nLZ1pbE9B6oErpyICwyzQ3Om3J9vWzQeArze9D+BuSTslbSigPB0VWQtKuqmdojJv1hNSY6tS0nMP\nTr200V+/bDWgxu9E+u+B9ANXTqXOY5B0Lo3AcE7T5nMiYkHS64C7JD0eEfd0OHcDsAFgbm5u4L99\n1YUnt0z9h+FrQZ7mP6Ayb9bLVnUZnKxXja1qSc89OPXSdAJBu8Vybb+28fletqoRFFItbxdFBIYF\nYHXT+1XZthaSTgVuBC6OiJ8tbo+Ihez3Pkm30+iaOiIwRMRmsrGJ+fn5gVOp8jzVKu9aSkUGmalQ\n5s36vKs7Z4XUrMaWGj9TYQApB66ciggM9wNrJZ1EIyBcBryn+QBJc8BtwPsi4vtN248FjoqI57PX\nFwBj6wzuVQsaZDExPzpxQOO+We/a0lpDO+098OTf1brGlhI/U2H6FDKPQdIlwP8ElgA3RcSfSLoS\nICJukHQj8HvAD7NTXoqIeUlvAG7Pth0NfDEi/qTf3xt2HkMvKeRuT3StrP3mXdTNOvG88UmQwncj\neeP6fBcs7zyGQsYYImIbsK1t2w1Nrz8IfLDDeU8Bp7Vvr0LVA8oTXysbV/O618B2gl/MOqr6u5G8\n9srJYtYd1PYzODVLYvRTde62U2Azg853cBbS2FX93Uhe3qy7Gk28dGDIVJ277VoZw813mJC88ZRV\n/d1IXp7KSc0mXjowZKrO3XatjOHmO0xI3njKqv5uJC9P5aRmEy+n5nkMeVSZu+0UWIbrFpqQvPHU\nJT2voWp5su5q1uXpwJAIp8Ay/HyHCcgbtxrLUzmp2cTLqVp22xLn1FObVIl8tktddtusEKmvg2M2\nrJbPNqAlr4wxJDgA7a4kS4u7hZI20ZMwx23xc12DOQ9uMdjoapSfbcPzc0gKUJPsJAcGG03N8rNt\neJ6EWYCaZCc5MIzJ1Dz6syY1IBudJ2EWoCYTMh0YxmCqmtw1qQHZ6DwJswA1mZDpwDAGU9XkrkkN\nyEbnpTEKUJPMO2cljcFUNbn9YJwkjSN7yJMwC1KDzDsHhjGYqkd/prIkRU3Wwy/DOJdw99IY08GB\nYQymbt2jqmtAE7ge/ih6dWX6pm55FDLGIOkiSU9I2i1pY4f9knRdtn+XpDPznltHXo2yZM6MajFV\nXZk2FiO3GCQtAa4H3gnsAe6XtDUivtd02MXA2uznzcBngTfnPLeW3OQukTOjWkxVV6aNRREthrOA\n3RHxVES8CNwKrGs7Zh3whWi4D1guaWXOc816c2ZUC2cP2aiKGGOYBZrXk91Do1XQ75jZnOcCIGkD\nsAFgbm5utBLbZJnizKhe2UfOHrJh1WbwOSI2A5uhsex2xcWxlKSSGVWyftlHDgQ2rCICwwKwuun9\nqmxbnmOW5jjXrL+qM6Mq4OwjG5cixhjuB9ZKOknSMcBlwNa2Y7YC78+yk84GDkTE3pznmlkHzj6y\ncRm5xRARL0n6EHAnsAS4KSIelXRltv8GYBtwCbAbeAH4973OHbVMZtPA2Ud9eNLj0PxoT6uGv7Qj\nax9jgEb2kefMkMyjNI8oU8WfeT/a09LlZzgUwhMpe0ht0mPNPvO1yUqyCdLrS+tWw0CcfdRFapMe\na/aZd4vByjfuL60fNWqpTXpMLVD14cBg5Rvnl7ZmTXYbk9QeiJNaoOrDgcHKN84vbWp9y1aN1B6I\nk1qg6sNjDFa+cc5UrlmT3cYopUmPNZud78Bg1RjXl3bZqqwbqcN2syIMm3aaUqDqw11JVh95BpVr\n1mS3mpmSMSwHBquHvF/I1PqWbbJMyRiWu5KsHgbJA69Rk700Ccy6nQhTMoblwGD1MCVfyLHwM7GH\n1x5QZ14DB39+5HETNoblriSrh5rlgSdlSro/Ctep+/LFf4SjlrYeN4FjWA4MVg/DDiqnMgu6ynJ0\nbW0965nhvXQKqIdfhH/26okfw3JXktXDMHngqXShDFOOIscEuqXw5i1LHRVx/boF1IO/gI89PXoZ\nE+YWg9XHqZfCRx+Ba/Y3fvf7oqfShTJoOYpOiezU2spblmFV2UIq6vpNcfflSIFB0nGS7pL0ZPb7\nNR2OWS3pW5K+J+lRSX/YtO8aSQuSHsx+LhmlPGYtUhmwHrQcRQe0lhTeAcs4jG435q/+59GCRd5g\nU9T1m+I5MaO2GDYC2yNiLbA9e9/uJeCPIuIU4Gzg9yWd0rT/0xFxevazbcTymL0ilRrfzBH1pd7l\nGEdAW2xtdQsORV6TbjfmHTcNX4sfpBVQ1PWb4jkxowaGdcDN2eubgfXtB0TE3oj4bvb6eeAxwAvI\n2/ilUOPbtQX+6fkjty85pns5xhnQyrgmXW/AbU+LHKQWP0grYNDr16slMmj35YQYNTCsiIi92esf\nAyt6HSxpDXAG8J2mzX8gaZekmzp1RZkNLYUa3/Zr4deHjtx+zKu6l2OcN+8yrskgASxvLX6QVsAg\n129KlrgYVN+sJEl3A6/vsOvjzW8iIiR1fYC0pFcBXwI+EhG/zDZ/FvgEjarEJ4BPAf+hy/kbgA0A\nc3Nz/Ypt1lD1LOhemS3djHslznFfk/OuPvJ5y4gjWgyQP4gMsjjiINevZk9WK0vfwBAR53fbJ+k5\nSSsjYq+klcC+LsctpREU/iYibmv6t59rOuZzwFd7lGMzsBlgfn6+awAyS8qwq71WHdBG0enGvPYC\neOiLrTfhQVpBnYJNr/PzXr9UEhQSM+o8hq3AFcCm7PeX2w+QJOCvgMci4s/b9q1s6op6N/DIiOUx\nS8ugN7RJ0enGPHf28K2gcbWivEx7R4oYvvIt6bXAFmAO+CFwaUT8XNKJwI0RcYmkc4B/AB4Gfp2d\n+l8iYpukvwZOp9HGfAb4j02Boqv5+fnYsWPH0OU2K5UXsEtX++RDaATuCc0+krQzIub7HjdKYKiK\nA4OZFWaKAnfewOAlMcyGMUU3k4lX5/GcMXFgMBtUKmswmY2J10oyG1QqazCZjYkDg9mgnOJoE85d\nSWb9TOlTvDry2MpUcGAw66XTeMJRSxtrHR1+8ZXjpmFugsdWpoa7ksx66TSe8OtDjbWO6rbq5qjP\nSPDYytRwi8Gsl0l5ilcRtX2PrUwNtxjMeknlmQ6jKqK2PynXwvpyYDDrJYVnOhShiNr+pFwL68uB\nwaZT3v72FJ7pUIQiavuTci2sL6+VZNNnyhZOA6bzv9mOkHetJLcYbPpMY3aNa/s2AGcl2fSZ1uya\nXovFeeKaNXGLwaaPs2ta+bnH1makwCDpOEl3SXoy+/2aLsc9I+lhSQ9K2jHo+WaFcnZNq2nsWrOe\nRm0xbAS2R8RaYHv2vptzI+L0toGPQc43K4b721vVsWtt1Fnc1tOoYwzrgLdnr28G/h74WInnmw3H\nD2d5Rd2ee+w1m8Zu1BbDiqZnNP8YWNHluADulrRT0oYhzjerzqTXTuvWteaur7Hr22KQdDfw+g67\nPt78JiJCUrdJEedExIKk1wF3SXo8Iu4Z4HyygLIBYG5url+xzYoxDbXTxf+OumQl1bHrq2b6BoaI\nOL/bPknPSVoZEXslrQT2dfk3FrLf+yTdDpwF3APkOj87dzOwGRoT3PqV26wQvWqnqd44h1GnrrW6\ndX3V0KhdSVuBK7LXVwBfbj9A0rGSXr34GrgAeCTv+WaVcu00PXXr+qqhUQPDJuCdkp4Ezs/eI+lE\nSduyY1YA/0fSQ8D/A74WEd/odb5ZMjznIT3OKhs7r5Vk1ovXGBqNZ1QnJe9aSV4Sw6yXug3MpmQa\nBu4nlAODWT91GphNybQM3E8gr5VkZuPhgfvacmAws9F0mwDogfvacmAws+H1WpnVaaW15cBgZsPr\nN47gtNJa8uCzmQ2v3zjCoAP3Tm9NglsMZja8IscR/MCgZDgwmNnwihxH8KqpyXBgMKuDVJf+LnIc\nwemtyfAYg1nqUp9BXNQEQK+amgy3GMxSNy1dLE5vTYYDg1nqunaxPJte19IonN6aDHclmaWuWxcL\n0JK9A/W/iXpdqiS4xWCWR5WDv526WNpNYteSVcYtBrN+qh78bV/6my7PUHH2jhVkpBaDpOMk3SXp\nyez3azocc7KkB5t+finpI9m+ayQtNO27ZJTymI1FCoO/p14KH30Ertmf9cF34OwdK8ioXUkbge0R\nsRbYnr1vERFPRMTpEXE68NvAC8DtTYd8enF/RGxrP9+scqnl1zt7x8Zs1MCwDrg5e30zsL7P8ecB\nP4iIH474d83KU+by0XnGMpy9Y2M26hjDiojYm73+MbCiz/GXAbe0bfsDSe8HdgB/FBG/6HSipA3A\nBoC5ubnhS2w2qPOu7vzc56Jr6IOMZTh7x8aob4tB0t2SHunws675uIgIuo6KgaRjgH8N/G3T5s8C\nbwBOB/YCn+p2fkRsjoj5iJg/4YQT+hXbrDhl1dBTGMswI0eLISLO77ZP0nOSVkbEXkkrgX09/qmL\nge9GxHNN//bLryV9DvhqvmKblayMGnpqYxk2tUYdY9gKXJG9vgL4co9jL6etGykLJoveDTwyYnnM\n6suPwrREjBoYNgHvlPQkcH72HkknSno5w0jSscA7gdvazv8zSQ9L2gWcC3x0xPKY1ZezjSwRIw0+\nR8TPaGQatW//EXBJ0/tfAa/tcNz7Rvn7ZhOlfSKbn2BmFfHMZ7OUONvIEuC1kszMrIUDg5mZtXBg\nMDOzFg4MZmbWwoHBzMxaODCYmVkLBwYzM2uhxtp39SLpJ0DVS3cfD/y04jIMwuUdL5d3vFzeYvzL\niOi7CmktA0MKJO2IiPmqy5GXyzteLu94ubzlcleSmZm1cGAwM7MWDgzD21x1AQbk8o6XyzteLm+J\nPMZgZmYt3GIwM7MWDgw5Sfq3kh6V9GtJXbMNJF0k6QlJuyVtLLOMbeU4TtJdkp7Mfr+my3HPZA9L\nelDSjgrK2fN6qeG6bP8uSWeWXca28vQr79slHciu54OSKnvKjqSbJO2T1PHJiAle237lTebaZuVZ\nLelbkr6X3Rv+sMMxSV3j3CLCPzl+gN8ETgb+HpjvcswS4AfAG4BjgIeAUyoq758BG7PXG4H/0eW4\nZ4DjKypj3+tF44FPXwcEnA18p8LPQJ7yvh34alVlbCvLvwLOBB7psj+Za5uzvMlc26w8K4Ezs9ev\nBr6f8ud3kB+3GHKKiMci4ok+h50F7I6IpyLiReBWYN34S9fROuDm7PXNwPqKytFLnuu1DvhCNNwH\nLG97VniZUvr/21dE3AP8vMchKV3bPOVNSkTsjYjvZq+fBx4DZtsOS+oa5+XAUKxZ4Nmm93s48oNS\nlhURsTd7/WNgRZfjArhb0k5JG8op2svyXK+Urmnesrwl6zb4uqTfKqdoQ0np2uaV5LWVtAY4A/hO\n2646XmM/2rOZpLuB13fY9fGI+HLZ5emnV3mb30RESOqWfnZORCxIeh1wl6THs5qbDee7wFxE/KOk\nS4A7gLUVl2lSJHltJb0K+BLwkYj4ZdXlKYIDQ5OIOH/Ef2IBWN30flW2bSx6lVfSc5JWRsTerOm6\nr8u/sZD93ifpdhrdJWUFhjzXq9Rr2kffsjTfGCJim6TPSDo+IlJcNyela9tXitdW0lIaQeFvIuK2\nDofU6hovcldSse4H1ko6SdIxwGXA1orKshW4Int9BXBEi0fSsZJevfgauADomBEyJnmu11bg/Vl2\nx9nAgaZVg3DWAAAA4UlEQVQusrL1La+k10tS9vosGt+xn5Ve0nxSurZ9pXZts7L8FfBYRPx5l8Nq\ndY1fVvXod11+gHfT6B/8J+A54M5s+4nAtqbjLqGRnfADGl1QVZX3tcB24EngbuC49vLSyK55KPt5\ntIrydrpewJXAldlrAddn+x+mS0ZYQuX9UHYtHwLuA95SYVlvAfYCh7LP7gcSv7b9ypvMtc3Kcw6N\nMbpdwIPZzyUpX+O8P575bGZmLdyVZGZmLRwYzMyshQODmZm1cGAwM7MWDgxmZtbCgcHMzFo4MJiZ\nWQsHBjMza/H/AUTAjc/C5ZbKAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from sklearn import datasets\n", - "\n", - "X, y = datasets.make_moons(noise=0.15, random_state=666)\n", - "\n", - "plt.scatter(X[y==0,0], X[y==0,1])\n", - "plt.scatter(X[y==1,0], X[y==1,1])\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n", - " decision_function_shape=None, degree=3, gamma=1, kernel='rbf',\n", - " max_iter=-1, probability=False, random_state=None, shrinking=True,\n", - " tol=0.001, verbose=False)" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.svm import SVC\n", - "\n", - "svc = SVC(kernel=\"rbf\", gamma=1)\n", - "svc.fit(X, y)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "def plot_decision_boundary(model, axis):\n", - " \n", - " x0, x1 = np.meshgrid(\n", - " np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),\n", - " np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),\n", - " )\n", - " X_new = np.c_[x0.ravel(), x1.ravel()]\n", - "\n", - " y_predict = model.predict(X_new)\n", - " zz = y_predict.reshape(x0.shape)\n", - "\n", - " from matplotlib.colors import ListedColormap\n", - " custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])\n", - " \n", - " plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH1tJREFUeJzt3X+MVeWZB/Dvw52pjPTSkSIyHVTaLRBr3YIS7IrbsC5t\nBJuw3bCNLaSENCE21WrMJmuWxCZNyHb7h7ugbQ3pajF22xj6i6xQI9XGLomN/FIYKRTdUmc6OioF\nbnWoM8Ozf9xz4c7lnHvPj/ec877nfD8J4c69Z+a8c+be85z3fZ/3OaKqICIimpJ3A4iIyA4MCERE\nBIABgYiIPAwIREQEgAGBiIg8DAhERATAUEAQkUdEZEREDge8vkxETovIQe/f/Sb2S0RE5nQZ+jnf\nB/AQgMfabPNrVf2sof0REZFhRnoIqvocgJMmfhYREeXDVA8hjJtE5CUAQwD+WVUH/DYSkQ0ANgDA\ntEsuuWHe7NkZNpGIbPF2zwfzboKTXvvt/rdU9fI435tVQNgP4CpV/bOIrATwMwDz/DZU1a0AtgLA\norlz9dmNGzNqIhHZZNvCdXk3wUn3LLnkRNzvzSTLSFXPqOqfvcc7AXSLyMws9k1EROFkEhBEZLaI\niPd4ibfft7PYNxERhWNkyEhEfghgGYCZIjII4OsAugFAVR8GsBrAV0RkHMAogNuVZVaJiKxiJCCo\n6hc6vP4Q6mmpRERkKa5UJiIiAAwIRETkYUAgIiutO7gt7yaUDgMCEREBYEAgIiIPAwIREQFgQCAi\nIg8DAhERAWBAICIiDwMCEREBYEAgIiIPAwIREQFgQCAii3G1crYYEIiICEC291SmAttZ68GDJ6t4\nfbyC2V0TuGtGDSuro3k3i4giYECgxHbWevCNNz+As1rvcA6Pd+Ebb34AABgUiBzCISNK7MGT1fPB\noOGsTsGDJ6s5tYiI4mBAoMReH69Eep6I7MSAUHA7az1YcWIWFr3ShxUnZmFnrcf4PmZ3TUR6nojs\nxIBQYI2x/eHxLijk/Ni+6aBw14wapsq5Sc9NlXO4a0bN6H6IKF0MCAWW1dj+yuoo7r/8NPq6xiFQ\n9HWN4/7LT3NCmcgxzDIqsCzH9ldWRxkAiBzHHkKBcWyfiKJgQCgwju1TEbB8RXY4ZFRgjSEcriAm\nojAYEAqOY/tEFBaHjIiICAADAhEReRgQiIgIAAMCERF5OKlccLxPARGFxYBQYLxPARFFwYBQYO1q\nGRUxIDT3hqbLOYgAp89NYc+IKCQGhAIr030KWntDp7UCaP019oyIwuGkcoGVqZaRX2+omakqr1nc\nX4IoL0YCgog8IiIjInI44HURkS0iclxEXhKR603sl9ozWcvI9hNhmF5P0p5RVveXIMqLqSGj7wN4\nCMBjAa+vADDP+3cjgO96/1OKTNUycmFyenbXBIbH27+d4/SMmuclBMA5yKTXizwnQ+VjJCCo6nMi\nMrfNJqsAPKaqCuB5EekVkT5VHTaxfwpmopZR0OT0v4704sGTVSsmbO+aUZsUtFrF6Rm1BkIN2K6I\nczJUTllNKvcDeK3p60HvuYsCgohsALABAObMmJFJ48oszDqF4BOeWNNbaO0Nmcgy6jQv0VDEORkq\nJ+uyjFR1K4CtALBo7tygizIyIOxQUKfhGFuGTUxXdg135a+4ueessX12woWGlKassoyGAFzZ9PUc\n7znKUdh7LvtNTrcq4rBJuCt/wf+OTk29LQAntSl9WQWEHQC+5GUbfRLAac4f5C/sOoWV1VHcf/lp\n9HWNI2gkXQErs4+SCBMIgeyCYdgAThSXkSEjEfkhgGUAZorIIICvA+gGAFV9GMBOACsBHAfwLoD1\nJvZLyQQNBfldGTeGY1qHmS6wZz7BlNZ5Cb8sIyC7OYQyLTSkfJjKMvpCh9cVwFdN7IvM8cvM6ZSN\n03ySHB6vAAVPw2yel/ALhlneozpKACeKgyuVS6x5KEig6Osax/2Xn+54Ml9ZHcWuq0d8rpXrinrF\nGvd4mWJyoSGRH+uyjChbSTJzynjFmuc9qk0tNCQKwoBAscUZckqiLCmX7X7PPAMSFR8DAsWW5RVr\nkvIZLgUSF8qEUHExIFAiWV2xxr23g40n2HYBqmz3sCC7cFKZYsm6+mnclEvbcvc7LS5jainliQGh\ngNI+WeexYvYDU/wXiAU932DbCbZTgCrTPSzIPgwIlkl6Ms/iZJ3HVbcGVLUKer7BthNspwDF1FLK\nEwOCRUyczLM4Wedx1X0moOpo0PMNtp1gOwWovNc6ULlxUtkiJiYUg07Kw+MVrDgxy0imTR7rD+Lu\n07bc/TCpukwtpbwwIFjExJV3u1LVjeeTZtpkvf4g6T7DnmCzSE+1LUARNWNAyFi7k46JK2//O4cp\nTNYcyuOklvY+s0xPZQ+AbMWAkKFOJx0TV95+J87hFMb88zippblP5v/ba9vCdXk3oTQYEDLU6aRj\n6iq49cS54sSs0tUcisq29FSiPDAgZCjMSSeNq+A8xvxdU8ZCfUStmHaaobxy4pnK2Fmc9NSsV2sT\npY09hAzleaXOicz2og7X2VgjiSgpBoSUdCpgxpRD+0QJmpyEpiJiQEhBp6tHnjDM6n5nH6bWdmHK\nxCmcq/TibHUFxqbdkOo+OQlNRcQ5hBTYVmGzyLrf2YdLT29HZeIUBEBl4hQuPb0d3e/sS3W/ttVI\nIjKBASEFvHrMztTaLoiOTXpOdAxTa7tS3a9tNZKKimsQssUhoxQwhTE7UyZORXreFM4HURExIKSA\nef/ZOVfpRcXn5H+u0pv6vjkfVDzzh7Zj6dFNqI4OodbTjz0LNuJY/+q8m5UZDhmlIM+8/7Llxp+t\nroBK96TnVLpxtroipxaRq+YPbcfyQ/di+uggBIrpo4NYfuhezB/annfTMsMeQkryuHosY2782LQb\n8C6QeZYRFc/So5vQPTH5c9I9MYqlRzcZ6yXY3gNhQCiQsubGj027gQGggHrXVICB7PZXHR2K9HxU\njR5II+g0eiAArAkKHDIqEGY3UZFsHlib6f5qPf2Rno+qXQ/EFgwIBcLceDuVbV7HVXsWbMRYZfLf\nZqzSgz0LNhr5+Wn3QExgQCgQ5sbbx8R9sikbx/pXY/d1D+BMzxwoBGd65mD3dQ8YG85JuwdiAucQ\nCoS58fYp67yOq471r05tPH/Pgo2T5hAAsz0QExgQUpDFvXmDMDfeLpzXiSfrCeUsNAINs4xKpIyp\nn2EEFaDrXRN8Yjz1A/fnPrhqnZql2QMxgQHBMA4RXKxRgK5Rc6gycQrTak/g3Xd+Af3WqcArpbvX\nPO7781wKFHFWrbfrYebZ+6TiY0AwLGgoYHi8gkWv9JXqQ9woTLb+mf+8qAAdJiZw6cSfAATnYwem\nHS688HDdwW3mGpwCkzfeAeBc7zNuafKsU06pzkhAEJFbAWwGUAHwPVX9ZsvrywD8HMD/eU/9RFW/\nYWLftgkaIgAECjc+xEn0rqlc9GEOk1YXd0VoI+jcfe3j1vYcTN14p/HY7zUb30t+PcNLT2/Hu0Db\noFDE+QNXJA4IIlIB8G0AnwYwCOAFEdmhqi+3bPprVf1s0v3Zzm+IoJXNH+Ikti1c5/tBrvX0Y/ro\nYMfvT5KPvXlg7fmeg+29hnba9TCjfk/e2pUm58pyO5lYh7AEwHFVfVVV3wPwIwCrDPxca7VbaNRa\n2A5Q359h64c4jm0L17WtW++34MePqXzsTu2xWfBks3j//F+xcdFb3NLkHC7Kj4mA0A/gtaavB73n\nWt0kIi+JyC4RuTboh4nIBhHZKyJ736rZt6AqzEKjldVR7Lp6BAf+ahh9BV093LumEvrE27rgZ7R7\nBsZbKpSmkY/daF+7TCbb+C0ubE9xDmLloregEuRZlCaneLJaqbwfwFWq+tcAHgTws6ANVXWrqi5W\n1cUzq/bdcjLq7TGLtnq4d03Fd56gk2P9q/HoLQew5bYRbP3MUTz9iS2prQhttXlg7fl22665hxnU\nuwQUAsUUKFp7DTbdqjVOaXIX/kZFZmJSeQjAlU1fz/GeO09VzzQ93iki3xGRmar6loH9ZyrqQqMi\nrR6OEwiCZJ2P3Wj33WvsnXxuaExCrzgxyzdBoa9rAruuHsHCV/p8v7/dfEOW4pQm53BRvkwEhBcA\nzBORD6MeCG4H8MXmDURkNoA3VFVFZAnqPZO3Dew7c3EWGhVh9XDQhLFrXJp87rSGYQoAv8ElmwqU\nsTS5WxK/d1R1HMCdAJ4CcATAE6o6ICJ3iMgd3marARwWkRcBbAFwu6oG9YetVrQhoDBcnaDtxPbf\nq9Od94JmGqLMQNjE9r9HGRhZh6CqOwHsbHnu4abHDwF4yMS+8lakIaAwiv4hbfx+tvYW2vUu+wJ6\nq0GJDESd2NS7dEZzFtGuq0cYDArAxd+1SL1VF49/ETEgkK8yfkBdS1HtNKREFBVrGdFFyhgMGjYP\nrD1fVM/2bCTAjoSFpAX3WKrCHuwhhFSW2yCWORg0bB5Ye37tArVn4o5wTDW1BwNCCGW5DSKDwWSb\nB9bymHQQdaFmKwZduzAghJD0Te8CnviCFeXYpNHLTXpHOPYO7FLagBDlw1H02yAW5YSXJtePUVq9\n3KAFma7X6iqrUgaEqB+OIr/pXT/RZcnlKqpp9XKTpL66eiyLrJQBoewF6ho4fhuPiyeytHq5cVNf\n+d6zUynTTstcoK4Zx2/j27ZwndV3aWsVVIOrcS+FJO/pqKmvJoskklmlDAhlLVDXzMWrXNs01iy4\nEBT87+RXv5cCkO2tXdsFg/lD27H06CZUR4dQ6+nHngUbM62K61q7TCvlkNFdM2roaikB1gX3h4DC\nYjAwx5X1Cq1DO3ndS6HdsZo/tB3LD92L6aODECimjw5i+aF7MX9oe6pt6sTWdqWhlAEBAKTlw9D6\ndVhlWbDmgvlD27H+mUX42pOzsP6ZRZl9YF0KCo0aXEGlhtPMnOs0VLT06CZ0T0zunXRPjGLp0U2p\ntSkMW9uVhlIGhAdPVjHWEgDGIJGvjlxcsJZ17yCrk3TeV3GNRWwuBAbAzsy56uhQpOezYmu70lDK\ngGAq48K1BWt5BIOsTtK2XMW5MlmadeZcmInkWo/frdiDn8+Kre1KQykDgqmro6IvWEsqy5O0TVdx\nLvQUsqyUGjaraM+CjRirTO5dj1V6sGfBRuNtisLWdqWhlFlGnW5NCISr4BgnWykveVSUzPIkXevp\nx/TRQd/n89C4VaetN94Bssmci5Ji2sjasS2bx9Z2paGUAaHTuoLG3EAjYASl5IUJLLbIYygjy5P0\nngUbsfzQvZN6JDZcxbm0XiFpGetWcdYbHOtfbeWJ1tZ2mSY239p40dy5+uzG7D/QK07MCrg14Th2\nXT0y6TnTHyLTPw/IL820MYfQepLefd0DiT9cfnnhgN1XcTb3FlovgoD6xU2SYSTX05tdXXtwz5JL\n9qnq4jjfW8oeQidR5gZMdrvD9kxckVZXuzXQNCard1/3AB695UDidqdl28J11gaFdgkScd57RQgG\nfu8xAE4EhbgYEHzkNTdg+kMJ5P/BDNvVjnI11m6y2vYPq61DSCYTJPJ+z5kQ9j3mai8iSCmzjDrJ\nq5hdWbOWoqan2pRRFIeNC9lMZd4VIRgA4d5jea99SQMDgo+8bl5uerGQKx/OqOmpRcgLt20hW9KL\noN41FWfeb2GEeY/ZsvbFJAaEAM3L/HddPZLJGL7JnoktJ5owol7xFykv3JbbdCa5CNq2cJ0zC/LC\nCvMec72n6odzCBYxWWbbpQ9o1PTUIuaF2zC3wDLWF4R5j9m29sUEpp0WkGsf1DTTU11lazZSgw29\nmrzZ+r5NknbKISPK3bH+1dh93QM40zMHCsGZnjm5f6jyluf8QrsKvkWbK0hi8vsWOCcVdHlzCK5O\nLHPIiBIxlXZXlpWgUTTKXwDZ9RjarYV5828/n3n5E9s13rNFWbPAHkLBZDlcVMS0O1ttW7gukyvz\noLUw/1brS33fripSthF7CClLoxRFO1nOHbi8QMxVjaBw97WPn3/O5ER00JqX2uhZY/somiJlGzEg\npKhopShaFemD4JpJgX/h5AABhAsSrXMUmwfW4v1//LXvyb/aMzVeQ0ugSNlGDAgpSqMUhU2K9EFw\n1ZE/DGPP4eP4jx9fgWrPVCz9+EdxzVV9uHvN4x2/1683ufTjH8Xu/S9jfOLCepiuyhQs/fhHjba7\nSGyttBsHA0KKsi5FkXX2R5E+CC468ofhSSfv2uhZ7N7/MgBgM+INHV5zVX2uYM/h46iNnp0UZMhf\nkdbFMCCkyKUb6MRhwwehaMXFothz+PikK3kAGJ84hz2Hjyc6gV9zVR8DQERFyZJjQEhRljfQySs3\nPM8PQllLFDcETfRyApjiMpJ2KiK3ishRETkuIvf5vC4issV7/SURud7Efm2XV5G8sihSul8cQRO9\nnACmuBL3EESkAuDbAD4NYBDACyKyQ1VfbtpsBYB53r8bAXzX+7/wsrhvbVmVPcuJE8BkmokhoyUA\njqvqqwAgIj8CsApAc0BYBeAxrRdOel5EekWkT1WHDey/9MpaSqBMWU6NbCK/iV5OAJMpJgJCP4DX\nmr4exMVX/37b9AO4KCCIyAYAGwBgzowZBppHRVWWLKd22UScACaTrCtdoapbVXWxqi6eWa3m3Rzr\nuXTfA9PKUhSvXTYRkUkmeghDAK5s+nqO91zUbYgiK0q6XzvMJqKsmAgILwCYJyIfRv0kfzuAL7Zs\nswPAnd78wo0ATnP+wAyX7nsAlHvdQFzVnqksJ9GC76N0JA4IqjouIncCeApABcAjqjogInd4rz8M\nYCeAlQCOA3gXwPqk+yVvuMihcsRlXzcQF7OJJrPlfVTEoGRkYZqq7kT9pN/83MNNjxXAV03si9zF\n6qjxMJtoMhveR7YEJdO4Upkyk+a6gSJerTVjNtEFNqw/sSEopcG6LCMKz7X5g6D1AUnXDfBGPeWS\n1vsoChuCUhoYEBzlYrrpngUbMVbpmfSciXUDZS9hUTZpvY+isCEopYEBgTKT1rqBol6tkT8b1p/Y\nEJTSwDkEylQa6wbKVMKC6tJ4H0WZh7Kh9HsaGBAc5dr8QVxhPqRlKWFB6YmTNVTERZEcMiJrhZ0s\ntmEIgdzGeag69hDIWlFS+4p4tRZH0dNvTWk9TlWfIUegfPNQDAgOKku5a04WR1PUxVKm+R0nhQDQ\ni7Yt2zwUh4zIWkVN7UtLUI/q1oNfwfpnFnFdhsfvOAnUCwoXlHEeij0EslbcyeK8h03y2n9Qz0lQ\nrN5C0uMb3MNUnOmZU+rhNgYEslac1L68h03i7N9UAAlKv20wXVohj8Bn4u8bnKY8B4/ecsBcYx0k\n9bpzdlo0d64+u7FcXbZOyjJ/ENf6Zxb5ftjPZPRhj7r/1hMcUO8FxcmS8vtZrRSCLbeNRPq5Yfc1\nLu/De13T0DN2KnKACBtcTPx9TR5zG92z5JJ9qro4zvdyDoEKJe+J6KjZKibTHSen3/ozNf/i1+4u\nfQ+Xjv0pcj2pKLWoTPx9maYcjENGVCh5rlqun8CiZauYDmCN9Nugq2BTk6Rh2hd2iCpKenGUv2+7\nXgfTlP2xh0CFkmeNmaVHN0F8goFCAvefViZV2lfBYdsXJnBECYph/76sgBsPA4JDXKxwmrU8hwPa\nZa8E7T/NAHasfzUeveUAttw2gkdvOWD0GPi120+YwBElKIb9+3LlcTwcMqLCyWs4oF32ShBXi6S1\ntvts92XoHq+hS8fObxM2sEVNLw7z9817LslVDAhEhsRdN+HqeHZru+OmoaYRFFkBNx4GBCJDXL3a\nNyVJYDMdFFkBNx4GBIeUpeS1jcJe/bp6tV80ZQ/OcTEgOKJ3TQUYyLsV5ZT36meKh8E5OmYZEXXA\njBUqC/YQiFqUvVZ+3sUBKT8MCERNyl4rn8Nj5cYhI6ImrtfKnz+0HeufWYSvPTkr1j0QODxWbgwI\nDuhdU2GGUUY61cq3uRiaiXINXNBVbhwyImricq38KEXignBBV7mxh0DUJM/ieEmZuLp3+fen5NhD\noNIIkz3j8oImE1f3Lv/+lBwDApVClOwZVxc0mSrX4OrvT8lxyIhKoQzZM7wTGCXFHoIDmGGUXFmy\nZ9pd3XPBGXXCHgKVQlp3JnMF7yBGYSQKCCIyQ0SeFpHfef9fFrDd70XkkIgcFJG9SfZJFEfZs2dc\nGjJLuriO4kvaQ7gPwC9VdR6AX3pfB/k7VV2oqosT7pMosrKPr7syZMaeTL6SziGsArDMe7wNwK8A\n/EvCn0mUirDZM0Uca3dlwZmJxXUUX9IewhWqOuw9fh3AFQHbKYDdIrJPRDa0+4EiskFE9orI3rdq\ntYTNI4qmqFeorgyZudKTKaqOAUFEdovIYZ9/q5q3U1WFX0nIuptVdSGAFQC+KiKfCtqfqm5V1cWq\nunhmtRrldymkbQvX5d2EUnFprD0KV4bMyj75n7eOQ0aqujzoNRF5Q0T6VHVYRPoAjAT8jCHv/xER\n+SmAJQCei9lmotQU+QrVhQVnvBdyvpIOGe0A0LiEXQfg560biMg0Eak2HgP4DIDDCfdLlApeoebL\nlZ5MUSWdVP4mgCdE5MsATgD4PACIyIcAfE9VV6I+r/BTEWns779V9RcJ90uUCl6hRpPGBLwLPZmi\nShQQVPVtAH/v8/wfAaz0Hr8K4BNJ9kOUFRZ3C493Vyselq4gasEr1HCYIlo8LF1BRLEUeQK+rNhD\nsBhTTskWfnMFrix2o/DYQyCitoIW6716+aedWOxG4TEgEFFbQXMFH3nz6UgpoixaZz8OGRFRW+3m\nCqLUh2JGkv3YQyCyiI1X0SYW6xW1JEjRMCAQWcLWwnomCuMxI8kNDAhElrD1KtpEOQmWBHED5xAs\n1bumAgzk3QrKUvBV9CC+9uSsXFdNJ12sx5IgbmAPwVKbB9bm3QTKWNDVsgBWDSHFwaJ1bmAPgchH\nHndN87uKbuVyaQiWBLEfAwJRi7xSJFsL6wEK8dmOE7GUFg4ZEbXIc3L3WP9qPHrLAWy5bQS1njm+\n23AiltLCgEDUwpYUSVfug0zFwSEjohZZFW3rNE/BezNQ1hgQiFpkkSIZdp6CE7GUJQ4ZWah3TSXv\nJpRaFimSti5Co3JjD4HIR9pX5rbMUxA1Yw+BKAcs5UA2YkAgygEziMhGHDIiygEziMhGDAhEOWEG\nEdmGQ0ZERASAAcFKrHRKRHlgQLAM1yAQUV4YEIiICAADAhEReRgQiIgIAAMCERF5GBCIiAgAAwIR\nEXkYECzDNQhElBcGBCIiAsCAQEREnkQBQUT+SUQGROSciCxus92tInJURI6LyH1J9klEROlI2kM4\nDOAfATwXtIGIVAB8G8AKAB8D8AUR+VjC/RIRkWGJyl+r6hEAEJF2my0BcFxVX/W2/RGAVQBeTrJv\nIiIyK4v7IfQDeK3p60EANwZtLCIbAGzwvvzLZRs2HE6xbSbMBPCWuR+3ofMm8RhuZ2rYTrPYTrNc\naOeCuN/YMSCIyG4As31e2qiqP4+74yCquhXAVm/fe1U1cG7CBi60EWA7TWM7zWI7zRGRvXG/t2NA\nUNXlcX+4ZwjAlU1fz/GeIyIii2SRdvoCgHki8mEReR+A2wHsyGC/REQUQdK008+JyCCAvwHwpIg8\n5T3/IRHZCQCqOg7gTgBPATgC4AlVHQi5i61J2pcRF9oIsJ2msZ1msZ3mxG6jqKrJhhARkaO4UpmI\niAAwIBARkceagBChDMbvReSQiBxMkl4VlyvlOkRkhog8LSK/8/6/LGC7XI5np+MjdVu8118Skeuz\nalvEdi4TkdPe8TsoIvfn0MZHRGRERHzX7Fh0LDu104ZjeaWIPCsiL3uf87t9tsn9eIZsZ/TjqapW\n/ANwDeoLKn4FYHGb7X4PYKbN7QRQAfAKgI8AeB+AFwF8LON2fgvAfd7j+wD8uy3HM8zxAbASwC4A\nAuCTAH6Tw986TDuXAfifPN6LTW34FIDrARwOeD33YxmynTYcyz4A13uPqwCOWfreDNPOyMfTmh6C\nqh5R1aN5t6OTkO08X65DVd8D0CjXkaVVALZ5j7cB+IeM999OmOOzCsBjWvc8gF4R6bOwnblT1ecA\nnGyziQ3HMkw7c6eqw6q633tcQz0zsr9ls9yPZ8h2RmZNQIhAAewWkX1emQsb+ZXrSPzHiugKVR32\nHr8O4IqA7fI4nmGOjw3HMGwbbvKGDnaJyLXZNC0SG45lWNYcSxGZC2ARgN+0vGTV8WzTTiDi8cyi\nltF5hspg3KyqQyIyC8DTIvJb78rDmKzLdcTVrp3NX6iqikhQfnHqx7Pg9gO4SlX/LCIrAfwMwLyc\n2+Qqa46liLwfwI8B3KOqZ/JoQxgd2hn5eGYaEDR5GQyo6pD3/4iI/BT1br3RE5iBdmZSrqNdO0Xk\nDRHpU9Vhrzs7EvAzUj+ePsIcHxtKnnRsQ/OHUFV3ish3RGSmqtpUAM2GY9mRLcdSRLpRP8n+QFV/\n4rOJFcezUzvjHE+nhoxEZJqIVBuPAXwG9Xsy2MaGch07AKzzHq8DcFHPJsfjGeb47ADwJS+j45MA\nTjcNgWWlYztFZLZIvf67iCxB/TP1dsbt7MSGY9mRDcfS2/9/ATiiqg8EbJb78QzTzljHM+vZ8Taz\n5p9DfSzuLwDeAPCU9/yHAOz0Hn8E9UyPFwEMoD6EY1079UImwjHUs1TyaOcHAfwSwO8A7AYww6bj\n6Xd8ANwB4A7vsaB+Y6VXABxCm8yznNt5p3fsXgTwPICbcmjjDwEMAxjz3ptftvRYdmqnDcfyZtTn\n1V4CcND7t9K24xmynZGPJ0tXEBERAMeGjIiIKD0MCEREBIABgYiIPAwIREQEgAGBiIg8DAhERASA\nAYGIiDz/DwyK68Ja2w2QAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plot_decision_boundary(svc, axis=[-1.5, 2.5, -1.0, 1.5])\n", - "plt.scatter(X[y==0,0], X[y==0,1])\n", - "plt.scatter(X[y==1,0], X[y==1,1])\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n", - " decision_function_shape=None, degree=3, gamma=10, kernel='rbf',\n", - " max_iter=-1, probability=False, random_state=None, shrinking=True,\n", - " tol=0.001, verbose=False)" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "svc_gamma10 = SVC(kernel=\"rbf\", gamma=10)\n", - "svc_gamma10.fit(X, y)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3W2MHdV5B/D/410DC1myOMbgrHnJC0bg0KwBOSmgiFIS\nYVPJTeVWgK2srKgWUQCjpFVRkYgUFfXlA5JN0kRWCzHCDYrcJkHFDsEhESkKEQYb8ELsOCgu3i5s\nwFl7SdbBu3764c61717P3DsvZ+a8zP8nWb577/jO8ey988w55znPiKqCiIhoju0GEBGRGxgQiIgI\nAAMCERFFGBCIiAgAAwIREUUYEIiICIChgCAiD4nIuIjsSXj9ehE5LCK7oz/3mdgvERGZ02vofb4F\n4GsAHumwzU9V9c8M7Y+IiAwz0kNQ1WcAHDLxXkREZIepHkIa14jIywBGAfyNqo7EbSQi6wCsA4DT\n+s666ryLLq2widVb0PcOZhhKC3mn7wO2m0DkjDd+8eLbqnpunn9bVUB4EcCFqvquiKwA8D0Al8Rt\nqKqbAGwCgAsvu0q//MjPKmqiHcO7N9tuQhAGVvdgw8ga280gsu7uZacfyPtvK8kyUtUjqvpu9Hgb\ngLkiMr+KfbuMwcCciS0zWL/kUdvNIPJaJQFBRM4XEYkeL4v2+04V+3YVg4F5E1tmeFyJCjAyZCQi\n3wZwPYD5InIQwFcAzAUAVf0mgFUAviAi0wCmANyiLLNKJWkGhc1Dw5ZbQuQXIwFBVW/t8vrX0EhL\nJbB3UJXmceb8AlE6VWYZERgMbJjYMoP1q0/OLzA4EMVjQKjQ+iWPYmK37VbU08SWmROPh7EZA6t7\nZr1eZpAwOdnNYEZlYkCoUOtJiexq/10Mo7yem8mLgKR2cr6ETGBAqAiHiqhM7Z8vBgjKgwGBKECc\nUKc8GBAqwN4B2TKxZebEMBN7DdQNA0LJGAzIFew1UDe8QU6JWEqBXNQs88HPJ7VjQCgRs4rIVRNb\nZlj/iU7BgFASftHIB6z/RK0YEEqwfsmj7B2QV4Z3b2ZgIAYEIjqJQaHeGBAMY++AfMegUF8MCIYx\nGFAIGBTqiQHBoDpPJG+b7MPyAwuw9FcLsfzAAmyb7LPdJCqIQaF+GBAMqfNQ0bbJPnz1N+/H2HQv\nFIKx6V589TfvZ1AIAINCvTAgGFLXYAAADx7qx1Gd/VE6qnPw4KF+Sy0ikxgU6oMBwYA6DxUBwJvT\nPZmeJ/8wKNQDA0JBrg8VVTG2f35v/P8/6XnyU90vfOqAAaEAH4JBFWP7d86bxBlyfNZzZ8hx3Dlv\n0uh+yC6XP+tkBgNCTq4HA6C6sf0V/VO479zDWNg7DYFiYe807jv3MFb0TxndD9nHXkLYWP46Bx+C\nAVDt2P6K/ikGgBqY2DIDDNluBZWFPYSMfAkGAMf2iSgbBoQMfAoGAMf2qRzMOAoXh4xS8i0YADgx\nhPPgoX68Od2D83tncOe8SQ7tEFEsBoSUfAsGTRzbpzIM797MezQHiENGKbCLTER1wIDQBYMBEdUF\nA0IHDAZEybgmITycQ4jh4wQyUdW4JiE8DAhthndvxsRu260wZ9tkH7OMiCgVBoQWoQ0RNWsZNctX\nNGsZAWBQIKJTMCBEQgsGQOdaRiEGhNbe0NlyHCLA4eNz2DMiSokBAWEGA6Be9ylo7w0d1h5AG6+x\nZ0SUTu2zjEINBkC9ahnF9YZamaryyntHU8iMBAQReUhExkVkT8LrIiIbRWS/iLwsIlea2G9RIQcD\nwGwtI9dPhGl6PUV7Rrx3NIXO1JDRtwB8DcAjCa8vB3BJ9OcTAL4R/W1N6MEAMFfLyIfJ6fN7ZzA2\n3fnjnKdn1DovIQCOQ2a9HvKcDNWPkR6Cqj4D4FCHTVYCeEQbngMwICILTew7jzotqFnRP4XtF41j\n10fGsP2i8VwnrqTJ6b8fH3CmtxDXG2qVp2fU3iNoDwZNIc7JpMFaRuGpalJ5EMAbLT8fjJ4ba99Q\nRNYBWAcA55x/ofGGcNHZbGnWKSSf8MSZ3kJ7b8hEllG3eYmmEOdkqJ6cyzJS1U0ANgHAhZddpSbf\nm8FgtrRDQd2GY1wZNjFd2TXdlb/iur6jxvbZDRcaUpmqyjIaBXBBy8+LoucqxWAwW9p7LncbjgHC\nHDZJd+Uv+J+pM0pvC+DWpPbA6vB+31RdQHgcwOeibKNPAjisqqcMF5WpTvMGaaVdp7Cifwr3nXsY\nC3uncSK5v40CzswnmJImEALVBcO0AbwKG0bWVL5PKp+RISMR+TaA6wHMF5GDAL4CYC4AqOo3AWwD\nsALAfgC/B7DWxH7T4lBRvKShoLgr4+ZwTPsw00nuzCeY0j4vEZdlBFQ3h1CnhYZkh5GAoKq3dnld\nAXzRxL7yYDCId+e8yVNO7t2ycVpPkmPTPUDgaZit8xJxwbDKe1RnCeBlGljdA4xUukuqSPArleuw\n3iCv1qEggWJh7zTuO/dw15N5M5U1Pgkz3CvWvMfLFJMLDYvgcFG4nMsyMmn9kkeDKmVdhiKZOa5c\nsVbJ5j2qTS00JEoSbEDgvEH58gw5FVGXlMtO/0+bAQngcFHogg0IDAblq/KKtUj5DJ8CiQ9lQihc\nQQYEzhtUp6or1rz3dnDxBNspQLl+DwvOH4QtuEllrjeoRtXVT/OmXLqUuw90X1zmcmopF6OFL7iA\nwKGi8k/WNlbMvn9O/AKxpOebXDvBdgtQdbqHBbknqIAQwlBR0ZN5FSdrG1fdmlDVKun5JtdOsN0C\nlCuppXE4XBS+YAJCKMGg6Mm8ipO1javuIwlVR5Oeb3LtBNstQNle60D1FsSkcijrDUxMKCadlMem\ne7D8wAIjmTY21h/k3adruftpUnVtp5bGYbppPQQREEKZNzBx5d2pVHXz+aKZNlWvPyi6z7Qn2CrS\nU10LUGlxuKgevA8Ivg0VdTrpmLjyjjtxNmqRmqs5ZOOkVvY+q0xPdbEHQAR4HhB8DAadTjomrrzj\nTpxjJYz52ziplblP1/P/iargdUDwTbeTjqmr4PYT5/IDC2pXcygr19JTXcJ7J9eHtwHBt94BkO6k\nU8ZVsI0xf9/UsVAfUTsv0059DAaAvZx4pjJ2lyc9terV2kRl866H4GswAOxeqXMis7Osw3Uu1kgi\nKsqrgODTeoNuBcx8SjmsiyxBk5PQFCKvAoIv6w26XT3yhGHW3N+9gDMmt2POzASO9wzgaP9yHDvr\nqlL3WZdJaC5IqxdvAoJPQ0W8euysaNXM1guDub97AWce3grRYwCAnpkJnHl4K34PlBoU6jIJzQVp\n9eJFQPApGAD1uXpMa2B1z+wTS9ErzqGTD+/4wT+cCAZNosdwxuT2UgMCM7coRM4HBJ/mDZrqcvXY\nzYn89RKHHObMHE54fqK8ncLfEhREnTgdEBb0vePNvEGrul89VrmQabJvEGdPHTzl+eM9A6Xvm/NB\n4Vk8uhXX7r0f/VOjmOwbxLOX3ot9g6tsN6syTq9DmDlkuwX52Mz7t5UbP7C6BwOreypf1frspffi\nWM/s/+Oxnj788Ip/5B2+DKjTHQgXj27Fja98CWdPHYRAcfbUQdz4ypeweHSr7aZVxukegs9sXD3a\nyo0/ZY6gQs2rt7irun0jAIaiYUcPe5oumNgyM2vOJmTX7r0fc2dmf0/mzkzh2r33G+sluN4DYUAI\niI3sps1Dw9bTEvcNrur4pdowsgYY8i85garVPzWa6fmsmj2QZtBp9kAAOBMUnB4yomyqzm7yreiZ\nb+2lak32DWZ6PqtOPRBXMCAEpKpaSZuHhr09uW4eGq58boE1j/yQNB/17KX3Gnn/snsgJjAgBKSK\n+wf7GghabRhZU1lQMHGfbKrGvsFV2HHFAzjStwgKwZG+RdhxxQPGhnPK7oGYwIAQkLKzm0IIBk1V\nBYVO8zq+qNPcy77BVXj4hl3YePM4Hr5hl9Gx/bJ7ICZwUrkEVdybN0lZ2U0hBYOmDSNrsH51uRlI\nXLVOTZ0y4lzBgGBYiGWRTRQ4czXdruygwFXr1KpbRpxtHDIyLIQhgnZF1xjELfj59Evr8dc/XIy7\nnliAtU8vtbr4p8zhI9M33rE1QV2nYaM6Y0AwLGkoYGy6x8ssExNDRXHpdr36Hs489ltnVoSWtbAu\n67xOp0lo2xPUeVYtLx7dirVPL3Ui8FN3RgKCiNwkIntFZL+I3BPz+vUiclhEdkd/7jOxXxclDwWI\nd1kmpuYN0qTVuZCPXVYvYUX/FLZfNI5dHxnD9ovGOw4dduph+tb7ZCkI/xQOCCLSA+DrAJYDuBzA\nrSJyecymP1XVoejPV4vu11VxQwTtXP4SlyFtWp3tfOwq01GTdOphjlmeoJ7YMpOpl+DDQiyazUQP\nYRmA/ar6uqq+B+AxACsNvK+zOo3jtg8RABr7Hq5nmZjMKopLt4vjQj627aDQqYfZ+BP/iovDkT4s\nxKLZTASEQQBvtPx8MHqu3TUi8rKIbBeRJUlvJiLrRGSniOx8e9K9ctFpxnFbhwgWVrR62CTTJ8T2\nBT9Tc+dhWubO2salfGybdwlL08OcTXG8wuHILNlYPizEotmqmlR+EcCFqvpHAB4E8L2kDVV1k6pe\nrapXz+93b1gl6zhuFauHTSvjhNi64GfTZ/biqY9vLG1FqAm2egmtPcyk3iWgECjmQNHea6hiODLt\nsJEPC7FoNhMBYRTABS0/L4qeO0FVj6jqu9HjbQDmish8A/uuXNaFRjbvjZBHVSfCMleEmmBz6KjZ\nw0zqXS7sncGuj4whqR+RNNdgStpeQtmlIMg8EwvTngdwiYh8CI1AcAuA21o3EJHzAbylqioiy9AI\nRO8Y2Hfl8iw08unOWryp+kkbRtZgGPby77vdeW8OEBsUquj2D+/enGqeyfWFWDRb4c+Oqk4DuAPA\nkwBeA/AdVR0RkdtF5PZos1UA9ojISwA2ArhFVZP6w07zcQgorRDLUxRlc4K5W+8yqYeQZQaCqJW4\nfF5eevHF+uN73RtvtFmrqEwMCPFcvePa8gMLYnurC3unsf2i8UrawM+Me+5edvoLqnp1nn/LWkY5\n+DQElBa/2P7pNqRElBVLVxB14eq8igsJC3nKWZC72EMg9g5SGFjd4+Swke3e6sSWGbw2bwzP7tmP\nyamj6O87A9d+7KO47MKF1tpE+bGHkBJvg1hvrvYSbNs22Yef7HwZk1NHAQCTU0ex48VX8dr/jllu\nGeXBgJCC7SqTZbJdu8cn7EmdKm6h5vTMcTy7Z7+lFlERDAgp+FZlMgte+dZHGb3cpAWZzR4D+aW2\nASHLlyPU2yCyd5Cdr72Esnq5SQsy+/vOKPS+ZEctA0LWL0fSh97lAnVErcrq5cYt1OztmYNrP/bR\nQu9LdtQyINShQF0aHC6qj7J6ue2pr/19Z+DGKy9nlpGnahkQQi9QlwaHi/Lz8dgl9WZN3Euhtdz7\nK397gMHAY7VchxB6gToql+2id3nErWpu3ksBwIlhUwCFPucTW2aAofztXDy6FdfuvR/9U6OY7BvE\ns5fe60RxPFfbZVotewh3zptEb1sJsF74PwSUBYeLivGtl9Dey7V1L4VOXL0Hs6vtKkMtAwIASNuX\nof3ntLhgzR2LR7di7dNLcdcTC7D26aVBfmGLaB3aSSppaSJzLm85C1fvwexqu8pQy4Dw4KF+HGsL\nAMcgma+OQl6wZkpVJ+mqr+J872G5mDnn6j2YXW1XGWoZEExlXPi6YK2qXPoqT9J1uoozoczMubw1\nn1y9B7Or7SpDLQOCqaujUBesmVLlSbpOV3EmlJ05l2fYyNV7MLvarjLUMssoTR35NDfByZOtVCdV\nnqQn+wZx9tTB2OfL4moF1LRcy5xrZu24ls3jarvKUMuA0PwSJJ3wm3MDzYCRlJLn4w1KBlb3ACPV\n7KvKk/Szl96LG1/50qweSdlXcT6mn3biwp0AXb0Hs6vtMq2WAQHofHXUaW6g9d90Cyx5lP2lrHIy\ntMyTdFxe+I4rHqjFVVwZ0l4EpVV0PYIL6rL2oFVtA0InWeYGTHa7TX8pbSurq92crG4GmuZk9Y4r\nHsDDN+wq3O4sNg8NY3i3/72EtBdBWaxf8qi32VhJnzEAQQcFBoQYtuYGyvhS2pa2q53laqzTZHXI\nX9YyMUFitrSfsdB6EbXMMurGVjG7un4ps6anMqPIPBfXJdiU5jMW4gpmBoQYtorZlf2ldLWWf9b0\nVNfywl09rlmEWtE3rzSfsRDXvjAgJGhd5r/9ovFKhmzq+qXMesVfp7zwqoRY0beINJ+xEHuqnENw\nSBlZSz7Imp7qYl6472sSAPfWJdiU5jNmY+1L2RgQHFPHL2We9NS65IWTPd0+YzbWvpSNAaEmqlyQ\nlpWLV/x15sICNR/M/twehEoPelvmEHz8/DIgUCGm0u58v+LfMLIG61c/6v2wUWhrYcrW/MyGsmaB\nk8qUW4hpd3XnawVfm0LKNmJAKFnIN9AJ6YtgwoaRNd7dSa2dybUwvq5SziqkbCMGhBK5dAOdMr6c\nIX0RTPH9JGhqLYzvgTEL19bFFMGAUCJXut9lfTlD+iKYVOVCNdM90LquhSkipHUxDAglCr0URUhf\nBB+V0QM1tUDN955SFvsGV2HHFQ/gSN8iKARH+hZhxxUPeDehDDDLqFSh30DHhXRRV4uLVVEFtaxi\niEXXwric4lwW37PkmhgQSuTjDXSysvlFcL1EcdlBwdUeaJ16B6ExMmQkIjeJyF4R2S8i98S8LiKy\nMXr9ZRG50sR+XedKfZhQv6A+ZDmVOZ/gYoXSEAr91VnhHoKI9AD4OoBPAzgI4HkReVxVX23ZbDmA\nS6I/nwDwjejv4NWxFEVVfMlyKqvOkWs9UAYD/5noISwDsF9VX1fV9wA8BmBl2zYrATyiDc8BGBCR\nhQb2TTXmS5aTifUJcdlErvRAAQaDUJgICIMA3mj5+WD0XNZtAAAisk5EdorIzrcnwxlrJ/N8ynIq\nEhQ6ZRPZKNPejsEgHM5NKqvqJgCbAGDpxRer5eZ4L+QvqwtZTllsGFkDDDXuNZxlCMnVW6uG/Nmq\nKxMBYRTABS0/L4qey7oNUWY+pvs1A0PaDCTXsokGVvcEm6hQdyYCwvMALhGRD6Fxkr8FwG1t2zwO\n4A4ReQyNyeTDqjrW7Y175hloHTnF1XUDNqRNS3VhPcusIODAGgN+jspROCCo6rSI3AHgSQA9AB5S\n1RERuT16/ZsAtgFYAWA/gN8DWJvmvcenPhDEnaiowfV1Aza0DrskDSVVnU3UOtfhUhBocuVzFGJQ\nElV3h+kvvOwq/fIjP8s85koNro3xrn16aewtB4/0LcLDN+yy0CL3rF/y6InHrZ/5Mm5akzTJ7fpw\nkAufo/agBDQSGlwoWXH3stNfUNWr8/xb5yaV44Ry85G6K3PdQChXa7NOxkMnA8RteA+34R0ASP09\n6JbV5PqJP4kL6086LYr08XPX5EVAABgUQlDWTcldGUIoQ+xJeyjlP3ZomMckF25u70JQKoNX1U5D\nuAFJVVw8TmWtG/ChhAWZ48L6E18WRWblVUAAGkHBtbFxF7k4HFBWmeBQr9Yongvlpl0ISmXwZsio\nXRXlhcm8MtYNuDCEQNUq43OUZR7Kt0WRaXkbEIBGUGAG0qlCqkef5kv67KX3xmZ8+H61RtXJMw/l\n46LIbrwbMmrHIaRTuThclEfzS3r21EEI9MSXdPHo1lnbuTCEQH7jPFSD1z2EVuwtNITUO8iS2hfi\n1VoeoaTflq39OPXHDDkC9ZuH8r6H0IpZSGHhZHE2aXtUdRd3nACJ3bZu81BBBQTg5BBSXQNDKMNF\nQLipfWVJ6lHdtPsLWPv0UgaGSNxxEii0LSjUcR4quIDQxN6C//Km9i0e3Yq1Ty/FXU8ssHIitLX/\npJ6TAEH1Fooe3+QeptZ+HiqYOYQ4WcsM+y60yfU8qX22Vy3n2b+pcf+k9Nsm06UVbMxXmPj9Jqcp\ns6aWF8XtTAk5MIQWDPKyXfgs6/5NFkmLe692CsHGm8czvW/afU3LaXiv9yz0HZvIHCDSBhcTv1+X\nC9OZUKS4XbBDRnHqPLdQF7YnorNmq5hMd5ydfhvP1PxLXLt79T2ceey3mSe0s0yGm/j9Mk05WdBD\nRnHy3sbQZewdnGRz1XLjBCZAzOk4af+mA1gz/TbpKtjUJGma9qUdosqSXpzl99up18E05Xi16iG0\nCiUbicFgNps1Zq7dez8kJhgoJHH/ZWVSlX0VnLZ9aQJHlqCY9vfLFNx8ahsQmnzORmIwOJXN4YBO\n2StJ+y8zgO0bXIWHb9iFjTeP4+Ebdhk9BnHtjpMmcGQJiml/v1x5nE/thozi+JiNxGCQzNZwQKfs\nlSS+Fklrb/fRuedg7vQkevXYiW3SBrastajS/H5tzyX5igGhRetJ1uXgwGDgprxF9nwdz25vd940\n1DKCIivg5lOrtNOsmrcvdGXyeWB1T1ArkUPEWkJuCD21tJPg76lsS/Pku3613cBwIhAEUrTOR2lP\n9L5e7YfG16E42xgQUjhxVT5Uba+hOdnNXoFdtlc/Uz4MztkxIGTUGhyActYznJgjYI/ACVny5Il8\nxoBQUDNDqVWWIMF5AffUvVY+50HqiwGhBHFBIhF7AU6JGx7SjKuPfcbhsXqr/cI0ola+18ovWhqa\nC7rqjQGBqIXPtfJNlGvggq5645ARUQufa+WbmPzmgq56Yw+BqIXN4nhFmbi69/n/T8Wxh0C1kSZ7\nxucFTSau7n3+/1NxDAhUC1myZ3xd0JS3llI7X///VByHjKgW6pA9wzuBUVHsIVAt1CV7ptPVPRec\nUTfsIVAtlHVnMl/wDmKURqGAICLzROQpEfll9Pc5Cdv9WkReEZHdIrKzyD6J8qh79oxPQ2ZFF9dR\nfkV7CPcA+JGqXgLgR9HPSf5EVYfy1ukmKqLu4+u+DJmxJ2NX0TmElQCujx5vBvATAH9X8D2JSpE2\neybEsXZfFpyxsqxdRXsI56nqWPT4TQDnJWynAHaIyAsisq7TG4rIOhHZKSI73514u2DziLIJ9QrV\nlyEzX3oyoeoaEERkh4jsifmzsnU7bdyLM+l+nNep6hCA5QC+KCKfStqfqm5S1atV9er3DczP8n8h\nKsynsfYsfBkyq/vkv21dh4xU9cak10TkLRFZqKpjIrIQwHjCe4xGf4+LyHcBLAPwTM42E5Um5CtU\nHxacmVpcR/kUHTJ6HEB0ey8MA/h++wYicpaI9DcfA/gMgD0F90tUCl6h2uVLTyZURSeV/wnAd0Tk\n8wAOAPgrABCRDwL4N1Vdgca8wndFpLm//1DVHxTcL1EpeIWaTRkT8D70ZEJVKCCo6jsA/jTm+f8D\nsCJ6/DqAjxfZD1FVWNwtPd5dLTwsXUHUhleo6TBFNDwsXUFEuYQ8AV9X7CEQUVdxcwW+LHaj9NhD\nIKKOkhbrvX7up71Y7EbpMSAQUUdJcwUf/s1TmVJEWbTOfRwyIqKOOs0VZKkPxYwk97GHQOQQF6+i\nTSzWC7UkSGgYEIgc4WphPROF8ZiR5AcGBCJHuHoVbaKcBEuC+IFzCESOSL6KPoi7nlhgddV00cV6\nLAniB/YQiByRdLUsgFNDSHmwaJ0f2EMgimHjrmlxV9HtfC4NwZIg7mNAIGpjK0WyvbAeoJCY7TgR\nS2XhkBFRG5uTu/sGV+HhG3Zh483jmOxbFLsNJ2KpLAwIRG1cSZH05T7IFA4OGRG1qapoW7d5Ct6b\ngarGgEDUpooUybTzFJyIpSpxyIioTRUpkq4uQqN6Yw+BKEbZV+auzFMQtWIPgcgClnIgFzEgEFnA\nDCJyEYeMiCxgBhG5iAGByBJmEJFrOGREREQAGBCIiCjCgEBERAAYEIiIKMKAQEREABgQiIgowoBA\nREQAGBCIiCjCgEBERAAYEIiIKMKAQEREABgQiIgoUiggiMhfisiIiBwXkas7bHeTiOwVkf0ick+R\nfRIRUTmK9hD2APgLAM8kbSAiPQC+DmA5gMsB3CoilxfcLxERGVao/LWqvgYAItJps2UA9qvq69G2\njwFYCeDVIvsmIiKzqrgfwiCAN1p+PgjgE0kbi8g6AOuiH/9w97LT95TYNhPmA3jbdiNSYDvNYjvN\nYjvNuTTvP+waEERkB4DzY166V1W/n3fHSVR1E4BN0b53qmri3IQLfGgjwHaaxnaaxXaaIyI78/7b\nrgFBVW/M++aRUQAXtPy8KHqOiIgcUkXa6fMALhGRD4nIaQBuAfB4BfslIqIMiqadflZEDgL4YwBP\niMiT0fMfFJFtAKCq0wDuAPAkgNcAfEdVR1LuYlOR9lXEhzYCbKdpbKdZbKc5udsoqmqyIURE5Cmu\nVCYiIgAMCEREFHEmIGQog/FrEXlFRHYXSa/Ky5dyHSIyT0SeEpFfRn+fk7CdlePZ7fhIw8bo9ZdF\n5Mqq2paxndeLyOHo+O0WkfsstPEhERkXkdg1Ow4dy27tdOFYXiAiPxaRV6Pv+fqYbawfz5TtzH48\nVdWJPwAuQ2NBxU8AXN1hu18DmO9yOwH0APgVgA8DOA3ASwAur7id/wLgnujxPQD+2ZXjmeb4AFgB\nYDsAAfBJAD+38LtO087rAfy3jc9iSxs+BeBKAHsSXrd+LFO204VjuRDAldHjfgD7HP1spmln5uPp\nTA9BVV9T1b2229FNynaeKNehqu8BaJbrqNJKAJujx5sB/HnF++8kzfFZCeARbXgOwICILHSwndap\n6jMADnXYxIVjmaad1qnqmKq+GD2eRCMzcrBtM+vHM2U7M3MmIGSgAHaIyAtRmQsXxZXrKPzLyug8\nVR2LHr8J4LyE7WwczzTHx4VjmLYN10RDB9tFZEk1TcvEhWOZljPHUkQuBrAUwM/bXnLqeHZoJ5Dx\neFZRy+gEQ2UwrlPVURFZAOApEflFdOVhTNXlOvLq1M7WH1RVRSQpv7j04xm4FwFcqKrvisgKAN8D\ncInlNvnKmWMpIu8D8J8A7lbVIzbakEaXdmY+npUGBC1eBgOqOhr9PS4i30WjW2/0BGagnZWU6+jU\nThF5S0QWqupY1J0dT3iP0o9njDTHx4WSJ13b0PolVNVtIvKvIjJfVV0qgObCsezKlWMpInPROMlu\nUdX/itl5Vt79AAABJklEQVTEiePZrZ15jqdXQ0YicpaI9DcfA/gMGvdkcI0L5ToeBzAcPR4GcErP\nxuLxTHN8HgfwuSij45MADrcMgVWlaztF5HyRRv13EVmGxnfqnYrb2Y0Lx7IrF45ltP9/B/Caqj6Q\nsJn145mmnbmOZ9Wz4x1mzT+LxljcHwC8BeDJ6PkPAtgWPf4wGpkeLwEYQWMIx7l26slMhH1oZKnY\naOcHAPwIwC8B7AAwz6XjGXd8ANwO4PbosaBxY6VfAXgFHTLPLLfzjujYvQTgOQDXWGjjtwGMATgW\nfTY/7+ix7NZOF47ldWjMq70MYHf0Z4VrxzNlOzMfT5auICIiAJ4NGRERUXkYEIiICAADAhERRRgQ\niIgIAAMCERFFGBCIiAgAAwIREUX+H4lKW7cnSsFIAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plot_decision_boundary(svc_gamma10, axis=[-1.5, 2.5, -1.0, 1.5])\n", - "plt.scatter(X[y==0,0], X[y==0,1])\n", - "plt.scatter(X[y==1,0], X[y==1,1])\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n", - " decision_function_shape=None, degree=3, gamma=100, kernel='rbf',\n", - " max_iter=-1, probability=False, random_state=None, shrinking=True,\n", - " tol=0.001, verbose=False)" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "svc_gamma100 = SVC(kernel=\"rbf\", gamma=100)\n", - "svc_gamma100.fit(X, y)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+MHsV5B/Dvw51Dronh4hLDxQ60iQCBi3oGy0mTqKKU\ntNip5LZyq9Bzc7XSWokKOZRUKi0SrSJF/fEHkoG0yGqhh+wmqmjTomJK49CKFiVVDFyAS4IDKAi7\nlziEnn2oTvGdn/7x7pr3Xnb3nd2Z2Z2d/X6kk+/ee+92vPe+++zMPPOMqCqIiIjOaboBREQUBgYE\nIiICwIBAREQJBgQiIgLAgEBERAkGBCIiAuAoIIjIvSJyXESezfn+tSJyQkTmko/bXRyXiIjcGXX0\ne/4GwN0A7i94zn+o6i85Oh4RETnmpIegqo8BeNXF7yIioma46iGY+ICIPA3gGIDfU9X5rCeJyB4A\newDgLWNvu+bCSy6vsYlERO328reffEVV31nlZ+sKCE8CuFhVXxOR7QD+EcClWU9U1X0A9gHAxVdc\no5+5/6s1NZGIqP1u2XruS1V/tpYsI1U9qaqvJZ8fBLBGRC6o49hERGSmloAgIheJiCSfb02O+8M6\njk1ERGacDBmJyBcAXAvgAhE5CuCPAKwBAFW9B8BOAJ8UkWUApwB8VFlmlYgoKE4CgqreOOT7d6OX\nlkpERIHiSmUiIgLAgEBERAkGBCIiAsCAQEREiTpXKlOkpudmMx+fnZyuuSVEZIMBgSqZ2bQfiwdW\nCp/THygYHIjCx4BApaSBYHGu/M8BwN75XR5aRUQuMCBELr0Qp2wuyCa9gjzpz81M7WdQIAoUA0Kk\n0kAweAGfxizGp0YAlAsONsGg3+KBFQYFokBJyBUkWO20vLwJ3iLDxver/M5hxqdGGBSIPLhl67lP\nqOqWKj/LtNOIVL1wT8/N5v6sj2BARGFiQIhA0QW97O8p+tqlxQMrb5rfIKJmcQ6h5WY27S+d8VOE\nPQKi7mIPoeVcTPQ2pc1tJ4oRewgtFtLd/MGlMdz16lp8b3kEF42u4OZ1S9i+9lTTzSKiEthDIGsH\nl8bw2R+cj4XlUSgEC8uj+OwPzsfBpbGhPxtSUCPqOgaElgrpQnrXq2vxI139UvqRnoO7Xl3bUIuI\nqAoGBLL2veWRUo8TUZgYECJ3cGkM215aj80vTGDbS+uNhnHKumg0e3I473EiChMDQguZDhfZjO2X\ncfO6JbxVzqx67K1yBjevWxr6s6yCShQOBoSI1TW2v33tKdz+zhOYGF2GQDExuozb33mCWUZELcO0\n04jVOba/fe2pIAJA3upn1k0iGo4BIWIXja5gYfnNf+JQxvbHp0aAefvf01/ZNW/VdtUqr0RdwoAQ\nsZvXLeGzPzh/1bCR6dh+G5TdrCddGT2NWc5dEGXgHELEQh7bty1/bbs/Q0jrOIhCwR5C5EIZ23fJ\n1WY9aVAo6i2YHIu9DYoFAwLVzqZ34CoY9CvqLZgMR6U/z01/qO04ZES1Ci0YuJTu8cB9Hqit2EOg\n2sQcDFJpG33tG50VbNgrIVcYEKgWXRtOWTyw4iwoDEurnZnqfb9L55f8YECIXAz7FLSld+DD9Nzs\n0HmM/nRagJPcVB3nECJWVy0jymazb7TNPtlMqaWq2EOIWFEto7b1Ekz094bOkzMQAU6cOafRntHi\ngRVgstzPuLigT8/Ndm6YjuyxhxCxWPYpMBkuGuwNndARLJ4ZCaJnZNpLsOkVZOnqMBtVx4AQsZD2\nKah6cTK9mGb1hvq5qvJaZX+JYUNHM5v2exvm4fARleFkyEhE7gXwSwCOq+pPZXxfAOwFsB3A/wL4\nLVV90sWxKZ/LWkZNTU6bBhKTXo9tzyjthaTnM+15ABh6LtKso7zv+TSzyU8KLMXH1RzC3wC4G8D9\nOd/fBuDS5ON9AP4y+Zc8Si9Sthdymwthv+k5f0Xl8iq7Dj6nrP5AKADOQFZ9v8ycTFNDOFXmMaib\nnAwZqepjAF4teMoOAPdrz9cAjIvIhItjU7Hta0/h4UuO46n3LuDhS45XuqvPm5z+w+Pj3rblBMoN\nd2Tt2tavSs9ocF5iMBik2jAnw6EjMlHXHMIGAC/3fX00eexNRGSPiBwWkcOvLb5SS+O6zGRMPP+C\nV37C1vTCVPYCNljZ9XxZwfg5K1ZVXofNS6RC2V+CyFZwaaequg/APgC4+IprtOHmBMflnZ7pUNCw\n4RjXqaxV/4+uK7ua3fkrPjT2I2fHHCaGhYYUrroCwjEA7+77emPyGCX6s1DqGms2XaeQNTk9qMyw\nSdEkZ0hDGybzEoDgP0+9FcBJ7+1xNZdDlKeuIaMHAXxMet4P4ISqLtR07KClKYeLB1bOftTFdJ1C\n/3AMkN1pU6BUGmaWkIIBMHxeIlXXHEJRACdywVXa6RcAXAvgAhE5CuCPAKwBAFW9B8BB9FJOn0cv\n7XS3i+O2WdntH30os+dyOhwzeJf6Bil1xzqYcRRaMADenKWVlWUE1DeHEMtCQwqXk4CgqjcO+b4C\n+F0Xx2q7EAJBqso6hf6L5MLyCGCRhhliEBjUPy+RFQzr3KO6TAAnqoIrlWuUDg2Fouqey2kqa3YS\nZrx3rE3vUZ01hFVnQKL4BZdlFKtQ74ZtMnO6eMfa5B7VrhYaEuVhQPAs1EDggsvSGCa6knJZ9P+s\nGpC4RwKZYEDwpAubutR5x2qTctmmQMLUUmoSA4IHJrtcxaKuIZSqezuEeIEtClA+9rAYnxoB5q2b\nTR3ASWXHYh4i6lelDLSNqimXoeXuD9vFznVqKTfJoTIYEBwKJRj4vlg3sTXn+edkLxDLezwVWu7+\nsADleg8LBgMqgwHBAZcbnNhezOu4WDdx1605Va3yHk+FtEkQMDxAuUwtHZ+KM/2X/GFAsORy8tjF\nxbyOi3UTd90nc+oo5T2eCi13f1iAcrXWgUNFVAUnlS25zCRyMaGYd1FeWB7BtpfWO8m0aWL9QdVj\nhpa7b5KqaztRz2BAVTEgWJjZtN9pNpGLO++iCp3p47aZNnWvP7A9pukFto70VN8BisGAbDAgVFR1\nqKjoouPizju7VLXCpubQIBcXtfGpkVLnz/eFtM70VF+pugwGZIsBoQKbYFB00XFx55114VzwMOZf\n9aJ29qI1D2CyXGaWzzUPPvL/6zQ7Oc21BmSNAaGCqvMGwy46ru6CBy+c215aH0TNoaw72NnJaesM\nrbyyDGV+b2jpqWWwLAW5woBQks28gclFx8ddcBNj/oOKhjOqBAWT4ZHZyWnj3lwbC/UxEJBrDAg1\nauqiE0KmjcnFGxh+V3/2Img4PLJ3fhcwOXyYr0rQbLJGEoMB+cCAUJJNmmmTd+pNlW0uO9GZ3tX3\nczFRund+F2am8oNC2aDZVI0kThyTTwwIJZQZLhpWwCyEnHjfql68fF3w9s7vwjTyeyBlgmYTk9AM\nBuQbA4IHw+4eYw0A/eq8eF127AF88LnPYe2pY1ga24DHL78NRzbszHyui0lsoJlJaAYD8o2lKzwI\nrcJmncanRjA7OV1rMLj+mU/jvFNHIVCcd+oorn/m07js2AOFbbQVWo0kIhfYQ/CgzSmM/QYnLvPu\nrFc9r+Zc+A8+9zmsWVnd41qzcgoffO5zub2EYfMJJpqYD5rZtJ+9BPKKAaEE0wtIG1MY++UN94SY\n2bL21LFSj6eGzScM08R80OKBFUxjlnMJ5A2HjDwIrcJmGW272CyNbSj1eD/boaPta0/h4UuO46n3\nLuDhS47XNje0eGAlmL03YnPZsQew+9HN+NRD67H70c2FQ48xYkDwwFUJ4yps91NoUzAAgMcvvw2n\nR1b/H0+PjOHxy28b+rN753e1es+A6bnZsx9kr8p8VGw4ZGSo7ArlJrKJbHPj27j3bjpPYJplNMjF\nfEIIpudmzwa3tgX1UFSZjyqrTEZcExgQDLXhgtH2Am1VHdmw0+pNZTufEIr0NTozxcnnKqrOR5lK\neyBp0El7IACCCQocMjLQli65bXZTly8is5PTQU6aV8E5hmps5qNMFPVAQsGAMESb3ljMjbfnIzDY\nzutU1abXbghs5qNM+O6BuMCAUGCwpk7o2pzdFBpXgcHFPtk2GBTMHdmwE4euugMnxzZCITg5thGH\nrrrD2XCO7x6ICwwIOapugtMkm+ymWIZLXJudnLbKRAph1TqDgrkjG3bivuuewp0fOY77rnvK6di+\n7x6ICwwIGWyDQVNDBEBzufExs0lPDWXVOoNC83z3QFxgltEAF8GgibLINupINw093W6YdF+FshfW\nkFatT8/NsifYMNuMON/YQxhgO0wUwhBBWb6zi7IW/Hz4GzP4nX+9rHUrQsteUKvM6xT1MG17n22b\nF6N6sYfQx2Z7zFTeUMDC8gg2vzAR3B4IddwxZqXbjerrGD39OoAw87GLlCmh7XLjHQDWvc/FAyvA\npNFTnWh7z7BrnPQQROQGEXlORJ4XkVszvn+tiJwQkbnk43YXx3XJ1SRy/lCAVM4ysZ3YzFNX2QaT\ntLrQ8rGHKXPuyszrFPUwXfU+65pPYCmI9rEOCCIyAuDzALYBuBLAjSJyZcZT/0NVJ5OPz9oe1yWX\nGUVZQwSDyryJ0zv4vfO7nN7N11nEzjStLqR87GF8nbuiHuaCwwnqOoJCGxZi0WoueghbATyvqi+q\n6usAvghgh4PfG6yicdzB1E9AM39H1SwTF/nxdVc0zUq3yxJSPrYJH8NtRT3M3kf2d6rMKfgOCm1Y\niEWruQgIGwC83Pf10eSxQR8QkadF5GER2ZT3y0Rkj4gcFpHDry2+4qB5xcr2DkwWGvUPEUxYrB4u\nuuBUGUaqezez1GC63ak167Asa1Y9J7R8bFOug4JJD3M1xRmL4UifQaENC7FoNVHNvoM1/gUiOwHc\noKq/nXz9mwDep6o39T3nPABnVPU1EdkOYK+qXjrsd198xTX6mfu/atW+PFWHiba9tD4zjXBidBkP\nX3L8TY8PThICvSwTkwVjphebNHMk6/8TagXM2CYbXV5YDy6N4a5X1yZDRFm9Aj3bXziT8f2812KR\nol5jXmbSsNfUYDE3oBf4Q8u9j80tW899QlW3VPlZFwHhZwD8sar+YvL1HwCAqv5Jwc98F8AWVS3s\nAvgKCDZzBptfmEjejqsJFE+9dyHzZ9I3eJmdtaoM62S9cUMLBDFzfbc97OZj8oUJ5AWMuZzX4jBZ\nvc6894rJazS2wN8GTQeEUQBHAPw8gGMAvg7gN1R1vu85FwH4vqqqiGwF8ACAS3TIwV0HBBeTx2V7\nCFVxAVE7ue4pFPUur35hIrOHcA4UT1YMCFW0bZe92NkEBOt1CKq6LCI3AXgEwAiAe1V1XkQ+kXz/\nHgA7AXxSRJYBnALw0WHBwKX0TWq7xgCoZ3P1Nm5UQz1pIHcRGIatYcibaSgzA+FCutczwBuZtnOy\nME1VDwI4OPDYPX2f3w3gbhfHKst1N76JzdWpfWYnp530SIt23pvIKYuRl8hQh/T9xsDQTlGXrvCV\nQeGzgBy73/FI1474WgAYcrlzlshop2gDQltfkAwG8fEVGGzKnfuW7trW1vdhV0UbENq2lwFQXykJ\naoaPwBBCufOihZqLB1YYFFokyoDgY6jI9x4HHCrqDt9DSXUyWajJoNAeUQYE1+rYBpHBoHtiCAym\nBfcYFNohuvLXPnoHRS/6EMZrqd3SzXcAv6UkqiyQHCaUHeHIjegCgqkybw6+6KkuLtcx9PO1k19I\nO8KRvU4GhLJvjjpe9IMXAM4pdJvrwOCrl1vHQk2qTycDQtk3RxMv+v7VnwADRFelC9wAu8w5X73c\nMgs1+foNX1QBwfRuquybI4TVyWmAYGDonvTvPTNVfeVzXi833UvB5jVdtJqa2iWqgGCqyhBQKC/6\nxQMrmJnq3TEyMHRLOvlcZRgpq5eb7qUAuJtTsBVqddRQ2+VaJ9NOb163hNGBEmCjaM+45+KBFabx\ndViVOkGDq5rPgWKwdHaV/ZlNmbQ51D2YQ22XD50MCAAgA2+Gwa9N+V6wVqSNq7F9uuzYA9j96GZ8\n6qH12P3o5ijfsKmqQSFd1ZxXarjJzLlQ92AOtV0+RBUQTN8kd726FqcHAsBpSOm7ozoWrA0Tei+h\nrot0l+7iUjYVRfOGR32ki5q2M9Q9mENtlw9RBQRTrjIuTFdp+hTy0FGdF+ku3cX1qxoUQqyUGuoe\nzKG2y4dOBgRXd0ehLFgLdeiozot0l+7iBlUpfVFXpdQyAevxy2/D6ZHVvevTI2N4/PLbnLaprFDb\n5UN0AcHkzWFyd2QyN1Bnt7uN6rxId+kublDVbDPflVLL9l6ObNiJQ1fdgZNjG6EQnBzbiENX3dF4\nNk+o7fIhurTTvfO7Vi3oyjJsXYHpSuaQVmnObNofXBrq0tgGnHfqaObjrj1++W24/plPr+qRxHoX\nl2V8asS6p+iy1lHVoawjG3YGeaENtV2uRddDAMx6CUV3R6ZzAz663VWzlkIcNvLZ1R6crAbQmbs4\nH1wmSMSyfWaXstZS0fUQALNeQpEycwMuF6z5KkDWlPRi7HpBTzpZnfYG0snqQ1fdgfuue8q63V3k\nqtZRTMEg6zUGIOqbjCgDAmDXhW6qgmOMZbZNu9plVoIWTVbH/GbNM7OpekmLVCgJEqEwfY3FtoI5\nyiEjoNdLqLrxSFMpeV19U5ZNT+1yRtGg6blZJ8OFLhIkYukdAGavsRjXvkTbQ7DRVDG7rtaWL3vH\nX+dkdWhc9AayhJQgEQKT11iMPdVoewiAXS+hic3LQ1wsVIeyd/xdygtPzWza7y0YAPWtS2gLk9dY\njD3V6HsIe+d3WZUNrlMIZbabUPaO39dkdah8BoJ+oVT0DYHJayzGnqqo5pW5at7FV1yjn7n/q05+\nV11vqqa0efx2MKMD6N2NMW3U7x7LrrX5NVhFqK/bW7ae+4Sqbqnys1EPGfXbO78Ls5PTlYeQyJ8u\nrQQto6lg0GQF3zZZ/boFzsgIRpM5hLZOLEc/ZDSoTUNIppq8M3OVdteVlaCmmgwGMa2F8S19zcay\nZqEzPYR+aW+B7MSYdheCJoeJQqjg2zYxVdrtZEBI1TGE5Lv73WRgi+mNEIqm5wy6uhbGRkzZRp0O\nCMDquQXXwcH3BjpN93JieiOEoOlgALCCbxUxVdrtfEBI7Z3fdXbdgqvA4LP73XQwAOJ6IzStajBw\n3QPt6loYGzGti+ncpPIwZ0tIT77xWNWUVV/d7xCCAcCS003zMQFcdS3M+NQIMF/pkK0X07oYBgQD\ne+d3AZPlA4PrUhTjUyNB7XkQwhshhuJiVXsHvoohVlmgFtLrsgmxZMkxIJRQNmXVZX2Y0IJBqsk3\nQldLFKdCmQDucu8gNk7mEETkBhF5TkSeF5FbM74vInJn8v2nReRqF8cNnYv6MONTI5idnA4yGDQt\nhiynmU37K/9sKBPAfG3GwzogiMgIgM8D2AbgSgA3isiVA0/bBuDS5GMPgL+0PW5Tyr74bYrkhdor\nCEUMWU42CyRDmADmyv+4uOghbAXwvKq+qKqvA/gigB0Dz9kB4H7t+RqAcRGZcHDsRtT1JmAwKNal\nLKesbKKmK5TyhiU+LgLCBgAv9319NHms7HMAACKyR0QOi8jh1xZfcdA89+p4E4SSSRSymNL9ihSt\nZ2miTDvAYBCr4NYhqOo+Vd2iqlvePn5B083J5fOCzWBgpitF8UIrJ8FgEC8XWUbHALy77+uNyWNl\nn9M6s5PTzleXMhiU0/Z0P5PXkMtsoqzXl+lr+GwgYEZRtFwEhK8DuFREfhK9i/xHAfzGwHMeBHCT\niHwRwPsAnFDVBQfHbtz41IizyqldCAYxrBuom4v1LEWvrf7vZQWHs98PKBDwdeSHdUBQ1WURuQnA\nIwBGANyrqvMi8onk+/cAOAhgO4DnAfwvgN22xw2Fq3LaXQkGXV43kGdYL6HqepYqQztteB2G8jqK\nMSh1Zsc039J88rKBoUvjsbsf3Zy55eDJsY2477qnGmhRWIqCwsGlMeNyErG/pkJ4HYW6Wxpgt2Ma\nVyo7kr4BTXsLXRyP9bluIIa7taKegkk5iTQdOuZgAISx/qRoUWTbXnf9GBAcS+sepfrrH63qjnco\nEKR8bUoeyhCCC7OT05WKKc5OTnfmNRXC5vYhBCUfgks7jU2630IbxmZ987VuIIYSFv3SMuwmuvja\nCmH9SayLIhkQqDa+1g3EeLfWv3FTli4GglQI609CCEo+cMiIauVj3UAIQwi+DA5BUo+P11GZeagQ\nSr/7wIBAQTN5k3KjHrJVZR6q7Ysis3DIiIKVvknPO3UUAj37Jr3s2AOrnhfCEAK1W2zzUFWxh0DB\nKpPaF+PdWhUxpN/WYfA8rc0YcgTaPQ9VBQMCBSvGyWKfYkq/9SnrPCkEwJsX6cYwD1UGh4woWLGm\n9vmS16O6Ye6T2P3o5jcNtXVV1nkSaBIU3tDFeSj2EChYVSeLmx42aer4eT0nQVy9Bdvzm9/DVJwc\n29jp4TYGBApWldS+podNqhzfVQDJS79NuS6t0ETgc/H3zU9TZk0tFrejqDRd+Kzs8V0WScv6XYMU\ngjs/crzU7zU91rK8Ba+Pvg1jpxdLBwjT4OLi7xtyYToXbIrbcQ6BotL0RHTZbBWX6Y6r02+zuZp/\nyWr3qL6OHzv9P4UpwllM04sBN39fpinn45ARRaXJVcu9C1i5bBXXASxNv827C3Y1SWrSPtMhqjLp\nxWX+vkW9DqYpZ2MPgaLSZI2ZDz73OUhGMFBI7vF9ZVL5vgs2bZ9J4CgTFE3/vmV6HfQG9hAoKk3W\nmCnKXsk7vs+yGz7vgrPancUkcJS56zf9+8a6X4FvDAgUnaaGA4qyV/K0tUjaYLt/tOYdWLO8hFE9\nffY5poGtbFA0+fs2PZfUVgwIRI5Uvdtv63j2YLurpqH6CIoxV8D1iQGByJG23u27YhPYXAdFVsCt\nhgGByIDp3W9b7/Zj0/XgXBUDAtEQTa9+pmoYnMtj2inREKyVT13BHgLRgK7Xym+6OCA1hwGBqE/X\na+VzeKzbOGRE1KfttfIvO/YAdj+6GZ96aH2lPRA4PNZtDAhEfYbVyg+5GJqLcg1c0NVtHDIi6tPm\nWvkuyjVwQVe3sYdA1KfJ4ni2XNzdt/n/T/bYQ6DOMMmeafOCJhd3923+/5M9BgTqhDLZM21d0OSq\nXENb//9kj0NG1AldyJ7hTmBkiz0E6oSuZM8U3d1zwRkNwx4CdYKvncnagjuIkQmrgCAi60TkyyLy\nneTfd+Q877si8oyIzInIYZtjElXR9eyZNg2Z2S6uo+psewi3AviKql4K4CvJ13l+TlUnVXWL5TGJ\nSuv6+HpbhszYk2mW7RzCDgDXJp/PAvh3AL9v+TuJvDDNnolxrL0tC864F3KzbHsIF6rqQvL59wBc\nmPM8BXBIRJ4QkT1Fv1BE9ojIYRE5/NriK5bNIyon1jvUtgyZtaUnE6uhAUFEDonIsxkfO/qfp6qK\nrJKQPR9S1UkA2wD8roj8bN7xVHWfqm5R1S1vH7+gzP+FyFqbxtrLaMuQWdcn/5s2dMhIVa/P+56I\nfF9EJlR1QUQmABzP+R3Hkn+Pi8iXAGwF8FjFNhN5E/MdahsWnHEv5GbZDhk9CGA6+XwawD8NPkFE\n3iYia9PPAfwCgGctj0vkBe9Qm9WWnkysbCeV/xTA34nIxwG8BODXAUBE3gXgr1R1O3rzCl8SkfR4\nf6uq/2J5XCIveIdajo8J+Db0ZGJlFRBU9YcAfj7j8f8GsD35/EUAP21zHKK6sLibOe6uFh+WriAa\nwDtUM0wRjQ9LVxBRJTFPwHcVewhENFTWXEFbFruROfYQiKhQ3mK9F9/54VYsdiNzDAhEVChvruA9\nP/hyqRRRFq0LH4eMiKhQ0VxBmfpQzEgKH3sIRAEJ8S7axWK9WEuCxIYBgSgQoRbWc1EYjxlJ7cCA\nQBSIUO+iXZSTYEmQduAcAlEg8u+ij+JTD61vdNW07WI9lgRpB/YQiAKRd7csQFBDSFWwaF07sIdA\nlKGJXdOy7qIHtbk0BEuChI8BgWhAUymSg4X1AIVkPI8TseQLh4yIBjQ5uXtkw07cd91TuPMjx7E0\ntjHzOZyIJV8YEIgGhJIi2ZZ9kCkeHDIiGlBX0bZh8xTcm4HqxoBANKCOFEnTeQpOxFKdOGRENKCO\nFMlQF6FRt7GHQJTB9515KPMURP3YQyBqAEs5UIgYEIgawAwiChGHjIgawAwiChEDAlFDmEFEoeGQ\nERERAWBAICKiBAMCEREBYEAgIqIEAwIREQFgQCAiogQDAhERAWBAICKiBAMCEREBYEAgIqIEAwIR\nEQFgQCAiooRVQBCRXxOReRE5IyJbCp53g4g8JyLPi8itNsckIiI/bHsIzwL4VQCP5T1BREYAfB7A\nNgBXArhRRK60PC4RETlmVf5aVb8FACJS9LStAJ5X1ReT534RwA4A37Q5NhERuVXHfggbALzc9/VR\nAO/Le7KI7AGwJ/ny/27Zeu6zHtvmwgUAXmm6EQbYTrfYTrfYTncur/qDQwOCiBwCcFHGt25T1X+q\neuA8qroPwL7k2IdVNXduIgRtaCPAdrrGdrrFdrojIoer/uzQgKCq11f95YljAN7d9/XG5DEiIgpI\nHWmnXwdwqYj8pIi8BcBHATxYw3GJiKgE27TTXxGRowB+BsBDIvJI8vi7ROQgAKjqMoCbADwC4FsA\n/k5V5w0Psc+mfTVpQxsBttM1ttMtttOdym0UVXXZECIiaimuVCYiIgAMCERElAgmIJQog/FdEXlG\nROZs0quqaku5DhFZJyJfFpHvJP++I+d5jZzPYedHeu5Mvv+0iFxdV9tKtvNaETmRnL85Ebm9gTbe\nKyLHRSRzzU5A53JYO0M4l+8WkX8TkW8m7/OZjOc0fj4N21n+fKpqEB8ArkBvQcW/A9hS8LzvArgg\n5HYCGAHwAoD3AHgLgG8AuLLmdv45gFuTz28F8GehnE+T8wNgO4CHAQiA9wP4rwb+1ibtvBbAPzfx\nWuxrw88CuBrAsznfb/xcGrYzhHM5AeDq5PO1AI4E+to0aWfp8xlMD0FVv6WqzzXdjmEM23m2XIeq\nvg4gLdez8ga6AAACbUlEQVRRpx0AZpPPZwH8cs3HL2JyfnYAuF97vgZgXEQmAmxn41T1MQCvFjwl\nhHNp0s7GqeqCqj6ZfL6EXmbkhoGnNX4+DdtZWjABoQQFcEhEnkjKXIQoq1yH9R+rpAtVdSH5/HsA\nLsx5XhPn0+T8hHAOTdvwgWTo4GER2VRP00oJ4VyaCuZcishPANgM4L8GvhXU+SxoJ1DyfNZRy+gs\nR2UwPqSqx0RkPYAvi8i3kzsPZ+ou11FVUTv7v1BVFZG8/GLv5zNyTwK4WFVfE5HtAP4RwKUNt6mt\ngjmXIvJ2AH8P4BZVPdlEG0wMaWfp81lrQFD7MhhQ1WPJv8dF5EvodeudXsActLOWch1F7RSR74vI\nhKouJN3Z4zm/w/v5zGByfkIoeTK0Df1vQlU9KCJ/ISIXqGpIBdBCOJdDhXIuRWQNehfZA6r6DxlP\nCeJ8DmtnlfPZqiEjEXmbiKxNPwfwC+jtyRCaEMp1PAhgOvl8GsCbejYNnk+T8/MggI8lGR3vB3Ci\nbwisLkPbKSIXifTqv4vIVvTeUz+suZ3DhHAuhwrhXCbH/2sA31LVO3Ke1vj5NGlnpfNZ9+x4waz5\nr6A3Fvd/AL4P4JHk8XcBOJh8/h70Mj2+AWAevSGc4Nqpb2QiHEEvS6WJdv44gK8A+A6AQwDWhXQ+\ns84PgE8A+ETyuaC3sdILAJ5BQeZZw+28KTl33wDwNQAfaKCNXwCwAOB08tr8eKDnclg7QziXH0Jv\nXu1pAHPJx/bQzqdhO0ufT5auICIiAC0bMiIiIn8YEIiICAADAhERJRgQiIgIAAMCERElGBCIiAgA\nAwIRESX+Hwb8X1Kps0BEAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plot_decision_boundary(svc_gamma100, axis=[-1.5, 2.5, -1.0, 1.5])\n", - "plt.scatter(X[y==0,0], X[y==0,1])\n", - "plt.scatter(X[y==1,0], X[y==1,1])\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n", - " decision_function_shape=None, degree=3, gamma=0.5, kernel='rbf',\n", - " max_iter=-1, probability=False, random_state=None, shrinking=True,\n", - " tol=0.001, verbose=False)" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "svc_gamma05 = SVC(kernel=\"rbf\", gamma=0.5)\n", - "svc_gamma05.fit(X, y)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH6JJREFUeJzt3X+MHdV1B/Dv8dsNXtyFxTHGyxpwEozFr9YGy6QYRTRx\nItap5KZyW4hRLBTJIgoEhCoV1RWRkJDSqqLiRxJkURKjpImQkxDUrItwQgS1RMRvsHHsGBrDbhc2\nQL3ehHXYXZ/+8eat376deW9+3Dtz5873I6389r3ZnevZ9+bMvffcM6KqICIiWlB0A4iIyA0MCERE\nBIABgYiIAgwIREQEgAGBiIgCDAhERATAUEAQkYdEZExE9kW8frWIjIvIS8HXHSb2S0RE5nQZ+j3f\nBXA/gIfbbPO0qv6lof0REZFhRnoIqvoUgPdN/C4iIiqGqR5CHFeKyCsARgD8varuD9tIRLYB2AYA\ni0455fKVy5bl2EQiopPe6/lo0U1I7K1fv/Cuqp6Z5mfzCggvADhXVX8vIhsBPApgZdiGqroDwA4A\nWLNihT65fXtOTSQimmvn6q1FNyGxW9edciTtz+aSZaSqx1T198HjIQDdIrIkj30TEVE8uQQEEVkm\nIhI8Xhfs97089k1ERPEYGTISkR8AuBrAEhEZBvB1AN0AoKoPANgM4CsiMg1gEsC1yjKrREROMRIQ\nVPW6Dq/fj3paKhEROYorlYmIQvRtqRXdhNwxIBARhbhn//VFNyF3DAhERASAAYGIiAIMCEREBIAB\ngYiIAgwIREQEgAGBiIgCDAhERC2quAYBYEAgIqIAAwIREQFgQCAiogADAhERAWBAICKiQJ73VCaP\nDU304L73e/H2dA3LumZw8+IJbOydLLpZRKlUsbAdwB4CGTA00YM7f3c6Rqe7oBCMTnfhzt+djqGJ\nnqKbRpRYVVNOAQYEMuC+93txXOe+lY7rAtz3fm9BLSKiNBgQKLO3p8OvqKKeJyI3MSB4bmiiB4NH\nlmLN6/0YPLLUyjDOsq6ZRM8TkZsYEDyW19j+zYsnsFBOzHluoZzAzYsnjO6HKA9VnVAGGBC8ltfY\n/sbeSdxx5jj6u6YhUPR3TeOOM8eZZUSlU+UJZYBpp17Lc2x/Y+8kAwBRybGH4DGO7RNREgwIHuPY\nPhElwSEjjzWGcLiCmCieKk8oAwwI3uPYPhHFxSEjIiICwIBAREQBBgQiInANAsCAQEQEgBPKACeV\nvcf7FBBRXAwIHmvUMmqUr2jUMgLAoEBE8zAgeKxdLSMfA0Jzb+g0OQERYPzEAvaMqKOdq7cW3QQn\nMCB4rEr3KWjtDY1rDdD6a+wZEcXDSWWPVamWUVhvqJmpKq953F+CqChGAoKIPCQiYyKyL+J1EZF7\nReSwiLwiIpeZ2C+1Z7KWkesnwji9nqw9I9472k9MNz3J1JDRdwHcD+DhiNcHAawMvq4A8O3gX7LI\nVC2jMkxOL+uaweh0+7dzmp5R87yEADgBmfO6z3MyVcF005OMBARVfUpEVrTZZBOAh1VVATwjIn0i\n0q+qoyb2T9FM1DKKmpz+x7E+3Pd+rxMTtjcvnpgTtFql6Rm1BkKN2M7HORmqprwmlQcAvNX0/XDw\n3LyAICLbAGwDgOWLF+fSuCqLs04h+oQnzvQWWntDJrKMOs1LNPg4J0PV5FyWkaruALADANasWBF1\nUUYGxB0K6jQc48qwienKrvGu/BVX9Rw3ts9OuNDQrL4tNWB/0a1wR15ZRiMAzmn6fnnwHBUo7j2X\nwyanW/k4bBLvyl/w35MLrbcF4KQ22ZdXQHgMwJeCbKNPAhjn/EHx4q5T2Ng7iTvOHEd/1zSiRtIV\ncDL7KIs4gRDILxjGDeBEaRkZMhKRHwC4GsASERkG8HUA3QCgqg8AGAKwEcBhAB8AuMHEfimbqKGg\nsCvjxnBM6zDTSe7MJ5jSOi8RlmUE5DeHUKWFhnlhhtFcprKMruvwugL4qol9kTlhmTmdsnGaT5Kj\n0zXA8zTM5nmJsGCY5z2qkwRw6ozzB/NxpXKFNQ8FCRT9XdO448zxjifzjb2T2H3eWMi1cp2vV6xp\nj5cpJhcaEoVxLsuI8pUlM6eKV6xF3qPa1EJDquNw0XwMCJRamiGnLKqSctnu/1lkQCL/MSBQanle\nsWYpn1GmQFKGMiE+4PxBOAYEyiSvK9a093Zw8QTbLkBV7R4WReFwUThOKlMqeVc/TZty6VrufqfF\nZUwtpSIxIHjI9sm6iBWzpy8IXyAW9XyDayfYTgGqSvewKArvjhaNAcExWU/meZysi7jq1oiqVlHP\nN7h2gu0UoJhaSkViQHCIiZN5HifrIq66j0VUHY16vsG1E2ynAFX0WgeqNk4qO8TEhGLUSXl0uobB\nI0uNZNoUsf4g7T5dy92Pk6rL1FJ7OFzUHgOCQ0xcebcrVd14PmumTd7rD7LuM+4JNo/0VNcCFFEz\nBoSctTvpmLjyDr9zmMJkzaEiTmq295lneip7AMXg2oPOGBBy1OmkY+LKO+zEOWphzL+Ik5rNfTL/\nn4gBIVedTjqmroJbT5yDR5ZWruZQUq6lp5J5XIzWGQNCjuKcdGxcBRcx5l82VSzUVyUcLoqHaac5\nKionnqmMnaVJT817tTalx95BPOwh5KjIK3VOZLaXdLjOxRpJRFkxIFjSqYAZUw7dkyRochK6PDhc\nFB8DggWdrh55wjCr+w/PY+HEbiyYOYoTtT4c7x3E1KLLre6Tk9DlweGi+DiHYIFrFTZ91v2H53Hq\n+C7UZo5CANRmjuLU8V3o/sPzVvfrWo0kCte3hQE6CQYEC3j1mJ+FE7shOjXnOdEpLJzYbXW/rtVI\nonDsHSTDISMLmMKYnwUzRxM9bwrng9zHukXJMSBYwLz//Jyo9aEWcvI/Ueuzvm/OB/nngpFdWH/w\nLvROjmCiZwB7V23HoYHNRTcrNxwysqDIvP+q5cYf7x2ESvec51S6cbx3sKAWkQvSzB1cMLILG169\nDadNDkOgOG1yGBtevQ0XjOyy0EI3sYdgSRFXj1XMjZ9adDk+AHLPMiK3pZk7WH/wLnTPzP2cdM9M\nYv3Bu4z1ElzvgTAgeKSqufFTiy5nAKBZadcd9E6OJHo+qUYPpBF0Gj0QAM4EBQ4ZeYTZTUTpM4sm\negYSPZ9Uux6IKxgQPMLceDdVbV6nrPau2o6p2ty/zVStB3tXbTfy+233QExgQPAIc+PdY+I+2RRf\nllTTQwObsefSu3GsZzkUgmM9y7Hn0ruNDefY7oGYwDkEjzA33j1Vndcpq0MDm62N5+9dtX3OHAJg\ntgdiAgOCBXncmzcKc+Pdwnmd/Li+EK0RaJhlVCFVTP2Mo4gCdC7gqvV8uB4MGmz2QExgQDCMQwTz\nNQrQNWoO1WaO4tSjj0DHH4XopNcBIs2q9XY9zCJ7n+Q/BgTDooYCRqdrWPN6fyU/xKEF6DAD0fox\naFQo/QDwLiiYvPEOgNL1PvPoGfJ+B+YYCQgicg2AewDUADyoqt9oef1qAD8F8D/BUz9W1TtN7Ns1\nUUMEgEBRjg+xaXEKzTUqlPoWEABzN95pPA57zcX3UmjP0HDg79tSY0VTgzKnnYpIDcA3AQwCuAjA\ndSJyUcimT6vq6uDLy2AAhKd+tqravRHiFpqzXaG0DNr1MEdLNkGdR2lyBgOzTKxDWAfgsKq+oaof\nAvghgE0Gfq+z2i00ai1sB2jo73D1Q2xDWAG6MHlUKHVd9GSzBF/hr7i46M12aXLe/MY8EwFhAMBb\nTd8PB8+1ulJEXhGR3SJycdQvE5FtIvKciDz37oR7C6riLDTa2DuJ3eeN4cVPjKKfq4frBehO34yZ\nWh8UwAk5Fdry1mOF0ro4Pcy5FCcgTi56iwrwJgI/h4rsyGul8gsAzlXVPwVwH4BHozZU1R2qulZV\n1y7pdW9YJentMbl6uG5q0eWYWPZPGB/4Vxw7+0580Pd3swFiptaHD07f7OX8QVLNPcyo3iWgECgW\nQNHaa3BpONJWaXIGA3tMTCqPADin6fvlwXOzVPVY0+MhEfmWiCxR1XcN7D9XSRcacfVwOFYojdaY\nhB48sjQ0QaG/awa7zxvD6tf7Q38+aq4hb7ZKkzMY2GMiIDwLYKWIfAz1QHAtgC82byAiywC8o6oq\nIutQ75m8Z2DfuUuz0IirhymNTmsYFgAIG1xyqUCZ6cDPFFO7Mr93VHUawE0AHgdwAMAjqrpfRG4U\nkRuDzTYD2CciLwO4F8C1qhrVH3Yah4AoL53uvBc105BkBqJMOFRkn5F1CKo6BGCo5bkHmh7fD+B+\nE/sqGoeAKE/tepf9Eb3VqESGMmMwyAdXKqfAISByQZqyGETtMCAQlVRVeqvsHeSHAYGoxFzordos\nuMdgkC8GhJhYZZJoPpvl3hkM8seAEAPvcZBd2nr1t1z8PRz9vn+TpL6wVe6dwaAYDAgx8B4H8Zn+\nIN+z/3pg9fznGSiSs9HLtXVHOAaDYlQ2ICT5cPA2iJ3N9gByWjQUFii2vrQzn52XkK1ero07wpXl\n7mc+qmRASPrh4G0Q53OxS998ImFwmMtWL9d06iuDQbEqGRCSfjiY713XKDd8z/7rnS8f0HxiueXi\n7wFApYeYbPVyTaa+MhgUr5IBgQXqkpntDTgeBKI0ejK3bPne7HNVCw5RvdzGvRSyvKdNpL4yGLih\nkgGBBeriKXsgaDVniGt1tXoOYb3cxr0UgGIz55qDwQUju7D+4F3onRzBRM8A9q7ajkMDm3NtTxhX\n22VaJQPCzYsncMfY6Zhuqu3XheoNAbXj4hyBabP/v9X+Zy219nIFmA0GDUVkzrUGgw2v3obumfr+\nT5scxoZXbwOAQk++rrbLhkoGBACQlg9D6/dx+bZgrcy9gixXcc1ZS75OSDf3ctdE3Eshz8y51mGi\n9Qfvmj3pNnTPTGL9wbsKPfG62i4bKhkQ7nu/F1MtAWAKkvjqyLcFaztXbzUeCPLqapu8iqtCtlKR\nmXNR8wW9kyOJns+Lq+2ywaV7aeTGVMZF0ttpuszGpF7jJH3a5DAEOnuSvmBkl/F9tbuKy2Ln6q3Y\nuXqrdzd0L+q+Hu3eZxM9Ybdij34+L662y4ZKBoSoq6CkV0c+LFhrnPBssHWSDmP7Ku6e/dfPBgYf\ngkOnm++Y1rel1vF9tnfVdkzVeuY8N1Xrwd5V2620KS5X22VDJYeM4qwriDM3UPYFa7ZT/fLsak/0\nDOC0yeHQ501qnYgGypullFfmXNwEhcbQnmvZPK62y4ZKBoRO6wrizg2UdcFaXhlEeZ2kgfpVXPMc\nAmD/Kq51fUNZA0OD6QSJOQsZYzo0sNnJE62r7TJNXL618ZoVK/TJ7fl3ywaPLI24NeE0dp83Nuc5\n0x8i21lLeaaTtk70AvWT9J5L78784QqbrAbcuYor22R060UQUL+4STuM5MNCs7KuPbh13SnPq+ra\nND/LgBC239f7oSFpqALFi58YtbZf0x/KVkWsLbDxobIZaEwq09qGJBdB7fgQCIDyvMfCZAkIlRwy\n6qSouQGbZbaLWmgWt6udJHCUJS+8TGsbsiZI+BIIGuK+x8rai4jCgBCiqLkBW1lLrq86TrqGoIx5\n4a0nTNcCRNqLINffW2nFeY/5uIK5kmmnneSdktdgKh22oZEi6foHNml6qg954c3rG1xIY02yLqHR\n5p2rtzr/3korznssz7TqvLCHEKGIYnYmeyZlCAQNSa/4i8gosiUsjRXIP2OpU+ZdmUqfmxDnPVbG\nnmonDAgOMVlmuyzBAEienuprXnjz36y5VDeQT4BovQiqB4HkqaM+iPMeyzOtOi/MMvJQ2Sb4ypzR\nUSST8xBl6lG6wtX3LbOMaFbfllrpuvS+XvHbZjTwN71nDrw5ir37DmNi8jh6exZi/SXn48Jzw6uj\nVtnc9+0wVGroappDKOP7lwHBI2VeZ1CVlaCuO/DmKPa88BqmZ+oTzBOTx7HnhdcAgEEhROM960u2\nEbOMPFJEMMirminlY+++w7PBoGF65gT27jtcUIvc51O2EQOCZUMTPRg8shRrXu/H4JGlGJro6fxD\nKRQxb+DTB4HqJiaPJ3qe/Mo2YkCwqFGKYnS6CwqZLZJnOigUNYns0weB6np7FiZ6nvxYF9PAgGBR\nHjfQKTKjyKcPQlkdeHMUDw49jX/70RN4cOhpHHgzW62t9Zecj67a3PdsV20B1l9yfqbf6zOf7pfA\ngGCR7RvoFJ1e6tMHoYwaE8CN4ZzGBHCWoHDhuf3YcNlFsz2C3p6F2HDZRZxQbuPQwGbsufRuHOtZ\nDoXgWM/ywlNP02KWkUU2i+S5kF7qQrqob8XFkmg3AZzlBH7huf0MAAn5kiXHgGCRzSJ5riwiKvKD\n4GNxsSQ4AUymGRkyEpFrROSgiBwWkdtDXhcRuTd4/RURuczEfl1nq0he0UNFrqh6lhMngMm0zD0E\nEakB+CaAzwIYBvCsiDymqq81bTYIYGXwdQWAbwf/es90kTwGg5OqnuW0/pLz5ywiAzgBTNmYGDJa\nB+Cwqr4BACLyQwCbADQHhE0AHtZ64aRnRKRPRPpV1d7tx8h7PhYXi9KunATLTJApJgLCAIC3mr4f\nxvyr/7BtBgDMCwgisg3ANgBYvnixgeb5g72DuXwqg91Op3ISDABkinNpp6q6Q1XXquraJb3m8vXL\njsFgPp/S/dphOQnKi4kewgiAc5q+Xx48l3QbiuBCiqmrfEn3a4fZRJQXEwHhWQArReRjqJ/krwXw\nxZZtHgNwUzC/cAWAcc4fxOdKiqkJVV43kFZvz8LQk3+Vs4n4PrIjc0BQ1WkRuQnA46jfXukhVd0v\nIjcGrz8AYAjARgCHAXwA4Ias+60Kn4aKqr5uIC1mE83lyvvIx6BkZGGaqg6hftJvfu6BpscK4Ksm\n9lUlvg0VtVs3UPYPkk3MJprLhfeRK0HJNK5UdphPQ0WA3XUDPl6tNWM20UkurD9xISjZ4FyWEdX5\nNFTUYKs6Km/UUy0uVNl1ISjZwIDgoL4tZqqhusZWddSql7CoGheq7LoQlGxgQHBMEfdFzoutdQO+\nXq1ROBfWn7gQlGzgHALlysa6gSqVsKA6G++jJPNQLpR+t4EBwTG+9g7SivMhrUoJC7InTdaQj4si\nOWTkEF/nDtKKO1nswhAClRvnoerYQ3CEz3MHaSVJ7fPxai0N39NvTWk9Tr0hQ45A9eahGBAcwWAw\nHyeLk/F1sZRpYcdJIQB03rZVm4fikJEDOFQUztfUPluielTXvPQV3PCLNVyXEQg7TgINgsJJVZyH\nYg/BAewdhEs7WVz0sElR+4/qOQn86i1kPb7RPUzFsZ7llR5uY0AomG/1ikxKk9pX9LBJmv2bCiBR\n6bcNpksrFBH4TPx9o9OUl+M7n37RXGNLSOp159y0ZsUKfXK7v102TiSbd8Mv1oR+2I/l9GFPuv/W\nExxQ7wWlyZIK+12tFIJ7Pz+W6PfG3de0fAQfdi1Cz9TRxAEibnAx8fc1ecxddOu6U55X1bVpfpZz\nCAViMDCv6InopNkqJtMd56bfhjM1/xLW7i79EKdO/V/ielJJalGZ+PsyTTkah4zIK0WuWq6fwJJl\nq5gOYI3026irYFOTpHHaF3eIKkl6cZK/b7teB9OUw7GHUBAfq5m6oMgaM+sP3gUJCQYKidy/rUwq\n21fBcdsXJ3AkCYpx/76sgJsOewjklSJrzLTLXonav82yGzavgsPaHSZO4Ehy1R/37+vr/QpsY0Ao\nAHsHdhU1HNAueyVKWYuktbb7ePcZ6J6eQJdOzW4TN7AlDYpx/r5FzyWVFQMCkSFpr/bLOp7d2u60\naag2giIr4KbDgJAz9g78VdarfVOyBDbTQZEVcNNhQCCKIe7Vb1mv9n1T9eCcFgNCjrgquZyKXv1M\n6TA4J8e00xxxIVo5sVY+VQV7CDlh76A8ql4rv+jigFQcBoScsHdQDlWvlc/hsWrjkFEOeL+D8ih7\nrfwLRnbhhl+swdd+tjTVPRA4PFZtDAg5YO+gPDrVyne5GJqJcg1c0FVtHDKyjHMH5VLmWvkmyjVw\nQVe1sYdgGXsH5VJkcbysTFzdl/n/T9mxh2ARewduiZM9U+YFTSau7sv8/6fsGBAsYu/AHUmyZ8q6\noMlUuYay/v8pOw4ZWcLMIrdUIXuGdwKjrNhDsIS9A7dUJXum3dU9F5xRJ+whWMDegXts3ZmsLHgH\nMYojU0AQkcUi8oSI/Cb494yI7X4rIq+KyEsi8lyWfZYBewfuqXr2TJmGzLIurqP0svYQbgfwc1Vd\nCeDnwfdR/kJVV6vq2oz7dBp7B26q+vh6WYbM2JMpVtY5hE0Arg4e7wTwSwD/kPF3ElkRN3vGx7H2\nsiw4472Qi5W1h3CWqo4Gj98GcFbEdgpgj4g8LyLb2v1CEdkmIs+JyHPvTkxkbF7+OFxUbr5eoZZl\nyKwsPRlfdQwIIrJHRPaFfG1q3k5VFWElIeuuUtXVAAYBfFVEPhW1P1XdoaprVXXtkt7eJP8XoszK\nNNaeRFmGzKo++V+0jkNGqroh6jUReUdE+lV1VET6AYxF/I6R4N8xEfkJgHUAnkrZZmfxfsnl5/MV\nahkWnPFeyMXKOmT0GIDGWXArgJ+2biAii0Skt/EYwOcA7Mu4XyIreIVarLL0ZHyVdVL5GwAeEZEv\nAzgC4G8BQETOBvCgqm5EfV7hJyLS2N9/qOp/Zdyvc9g78AOvUJOxMQFfhp6MrzIFBFV9D8BnQp7/\nXwAbg8dvAPizLPtxHYvY+YPF3eLj3dX8w9IVRC14hRoPU0T9w9IVRJSKzxPwVcUeQkZ9W2pce0De\nC5srKMtiN4qPPYSMGAzId1GL9d4487OlWOxG8TEgZMC6RVQFUXMFH//dE4lSRFm0zn0cMiKittrN\nFSSpD8WMJPexh5ABh4vINBevok0s1vO1JIhvGBCIHOFqYT0ThfGYkVQODAgpcWUymebqVbSJchIs\nCVIOnEMgckT0VfQwvvazpYWums66WI8lQcqBPYQU2DsgG6KulgVwaggpDRatKwf2EIhCFHHXtLCr\n6FZlLg3BkiDuY0AgalFUimRrYT1AISHbcSKWbOGQUUIcLvJfkZO7hwY24zuffhH3fn4MEz3LQ7fh\nRCzZwoCQAFcmV4MrKZJluQ8y+YNDRkQt8ira1mmegvdmoLwxIBC1yCNFMu48BSdiKU8cMoqJZa6r\nI48USVcXoVG1sYcQE4NBtdi+MndlnoKoGXsIRAVgKQdyEQMCUQGYQUQu4pBRDFx7QKYxg4hcxIBA\nVBBmEJFrOGTUAXsHRFQVDAhERASAAYGIiAIMCG1wuIiIqoQBIQIL2RFR1TAgEBERAAYEIiIKMCCE\nYCE7IqoiBgQiIgLAgBCKvQMiqiIGBCIiAsCAMA/XHhBRVWUKCCLyNyKyX0ROiMjaNttdIyIHReSw\niNyeZZ9ERGRH1h7CPgB/DeCpqA1EpAbgmwAGAVwE4DoRuSjjfomIyLBM5a9V9QAAiEi7zdYBOKyq\nbwTb/hDAJgCvZdm3DRwuIqIqy+N+CAMA3mr6fhjAFVEbi8g2ANuCb/94xrZt+yy2rcW2zpvMtwTA\nu4YbYgPbaRbbaRbbac6qtD/YMSCIyB4Ay0Je2q6qP0274yiqugPAjmDfz6lq5NyEC8rQRoDtNI3t\nNIvtNEdEnkv7sx0DgqpuSPvLAyMAzmn6fnnwHBEROSSPtNNnAawUkY+JyEcAXAvgsRz2S0RECWRN\nO/2CiAwD+HMAPxORx4PnzxaRIQBQ1WkANwF4HMABAI+o6v6Yu9iRpX05KUMbAbbTNLbTLLbTnNRt\nFFU12RAiIioprlQmIiIADAhERBRwJiAkKIPxWxF5VUReypJelVZZynWIyGIReUJEfhP8e0bEdoUc\nz07HR+ruDV5/RUQuy6ttCdt5tYiMB8fvJRG5o4A2PiQiYyISumbHoWPZqZ0uHMtzRORJEXkt+Jzf\nErJN4cczZjuTH09VdeILwIWoL6j4JYC1bbb7LYAlLrcTQA3A6wA+DuAjAF4GcFHO7fwXALcHj28H\n8M+uHM84xwfARgC7AQiATwL4VQF/6zjtvBrAfxbxXmxqw6cAXAZgX8TrhR/LmO104Vj2A7gseNwL\n4JCj78047Ux8PJ3pIajqAVU9WHQ7OonZztlyHar6IYBGuY48bQKwM3i8E8Bf5bz/duIcn00AHta6\nZwD0iUi/g+0snKo+BeD9Npu4cCzjtLNwqjqqqi8EjydQz4wcaNms8OMZs52JORMQElAAe0Tk+aDM\nhYvCynVk/mMldJaqjgaP3wZwVsR2RRzPOMfHhWMYtw1XBkMHu0Xk4nyalogLxzIuZ46liKwAsAbA\nr1pecup4tmknkPB45lHLaJahMhhXqeqIiCwF8ISI/Dq48jAm73IdabVrZ/M3qqoiEpVfbP14eu4F\nAOeq6u9FZCOARwGsLLhNZeXMsRSRPwHwIwC3quqxItoQR4d2Jj6euQYEzV4GA6o6Evw7JiI/Qb1b\nb/QEZqCduZTraNdOEXlHRPpVdTTozo5F/A7rxzNEnOPjQsmTjm1o/hCq6pCIfEtElqiqSwXQXDiW\nHblyLEWkG/WT7PdV9cchmzhxPDu1M83xLNWQkYgsEpHexmMAn0P9ngyucaFcx2MAGvW8twKY17Mp\n8HjGOT6PAfhSkNHxSQDjTUNgeenYThFZJlKv/y4i61D/TL2Xczs7ceFYduTCsQz2/+8ADqjq3RGb\nFX4847Qz1fHMe3a8zaz5F1Afi/sjgHcAPB48fzaAoeDxx1HP9HgZwH7Uh3Cca6eezEQ4hHqWShHt\n/CiAnwP4DYA9ABa7dDzDjg+AGwHcGDwW1G+s9DqAV9Em86zgdt4UHLuXATwD4MoC2vgDAKMApoL3\n5pcdPZad2unCsbwK9Xm1VwC8FHxtdO14xmxn4uPJ0hVERASgZENGRERkDwMCEREBYEAgIqIAAwIR\nEQFgQCAiogADAhERAWBAICKiwP8DTrY1J7kI4XQAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plot_decision_boundary(svc_gamma05, axis=[-1.5, 2.5, -1.0, 1.5])\n", - "plt.scatter(X[y==0,0], X[y==0,1])\n", - "plt.scatter(X[y==1,0], X[y==1,1])\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n", - " decision_function_shape=None, degree=3, gamma=0.1, kernel='rbf',\n", - " max_iter=-1, probability=False, random_state=None, shrinking=True,\n", - " tol=0.001, verbose=False)" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "svc_gamma01 = SVC(kernel=\"rbf\", gamma=0.1)\n", - "svc_gamma01.fit(X, y)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH2BJREFUeJzt3X+MXfV55/H34xknnngHHJcfntgQJw2g0GQXQ+RkQ7Zi\nu7SK3V2xXXkrUlZFKJKVqNCNqpWK1rtUyipSdv+gCpAWWS0tSLuJItIkaGMX4SYRXUupAoSAgUIM\nGzf2TuIAsj2BceOxn/3jnjvce33uvefc+z3nfM85n5dkeebeM3O+Pp45z/fH832OuTsiIiJrqm6A\niIjEQQFBREQABQQREUkoIIiICKCAICIiCQUEEREBAgUEM3vAzI6b2aEh799gZifN7Onkz10hzisi\nIuHMBvo+fwncBzw04pi/dfd/Heh8IiISWJARgrs/Drwe4nuJiEg1Qo0QsviomT0DHAP+k7s/l3aQ\nme0GdgOsf/vbr7ti06YSmygiUm9PHznyqrtfPMnXlhUQngIud/efm9lO4OvAFWkHuvteYC/Atq1b\n/dt79pTURBGR+nvn7t1HJv3aUrKM3P2Uu/88+XgfsNbMLirj3CIikk0pAcHMNpmZJR9vT877Whnn\nFhGRbIJMGZnZl4AbgIvM7CjwR8BaAHe/H9gFfNrMVoBl4GZXmVURkagECQju/okx799HJy1VREQi\npZ3KIiICKCCIiEhCAUFERAAFBBERSSggiIgIoIAgIiIJBQQREQEUEEREJKGAICIigAKCiIgkFBBE\nRARQQBARkYQCgoiIAAoIIiKSUECQIPYtzbHjyCVse3mBHUcuYd/SXNVNEmmdDbfMTPX1ZT1TWRps\n39Icn/3ZhZz2Tv9icWWWz/7sQgB2zi9X2TSR1njwmlvhOYBPTvw9NEKQqd37+vxqMOg67Wu49/X5\nilok0i4PXnNrkO+jEYJM7Scr6cPUYa+LSBihAkGXRggNV8bc/qbZs7leF5HpTbtekEYjhAYra27/\njo1LfecBWGfnuGPjUrBziEjHhltm+MJz/yFZLwhLI4QGK2tuf+f8MnddfJKF2RUMZ2F2hbsuPqkF\nZZHAVoNBQTRCaLAy5/Z3zi8rAIgU6K0souIoIDTYptmzLK6c/1+suX2R+gi9cDyKAkKDaW5fpL7K\nDARdCggN1p3Cuff1eX6yMsOm2bPcsXFJUzsikasiGIACQuNpbl+kPopeNB5HAUFEpGLdPQVVBgNQ\nQBARqVTVo4Je2ocgIlKRmIIBaIQgIlK61UXjgvcV5KWA0HD7luaUZSQSkaoyiLJQQGgwPadAJB4x\nB4IuBYQGG1XLqIkBoXc0dIGdwwxOnlujkZFUKrZ1glEUEBqsTc8pGBwNnfQZ8M57GhlJVeoUDEAB\nodHaVMsobTTUK9TISGsykkWRJaqLFCTt1MweMLPjZnZoyPtmZveY2WEze8bMrg1xXhntjo1LrLNz\nfa9NWsuojAftTCPLqGfakVF3FLK4MotjqyOP2K6FVGfDLTM8eM2ttRoV9Ao1QvhL4D7goSHv7wCu\nSP58GPjT5G8pUKhaRnVYnB42Gho8Jq/eEYEB57C+95u8JiP5lFGeumhBAoK7P25mW0ccchPwkLs7\n8F0z22BmC+6+GOL8MlyIWkbDFqf/8/EN3Pv6fBTTJmmVXXtNMjIaDIQ+5LgmrslIdnVbJxilrDWE\nzcCPez4/mrx2XkAws93AboAtGzeW0rg2yzInPvyGZ9GMFgZHQyGyjMatS3Q1cU1GxqvrOsEo0S0q\nu/teYC/Atq1bh3XKJICsU0HjpmNimTYJXdk1W8/f+djc6WDnHEeL2nFowvRQmrJqGR0DLuv5fEvy\nmlQo6zOX0xanBzVx2iRbz9/4P8vrCm8LaFE7Bt1F46YqKyA8Avxukm30EeCk1g+ql3Wfws75Ze66\n+CQLsysMm0l3iDL7aBpZAiGUFwyzBnAJr+7ZQ1kFmTIysy8BNwAXmdlR4I+AtQDufj+wD9gJHAbe\nBG4LcV6ZTp59Ct3pmMFpprfEs54QyuC6RFqWEZS3htCmjYaxaOI6wSihsow+MeZ9B34vxLkknEme\nudx7k1xcmYGGp2H2rkukBcMyn1Hdpo2GVWtbIOiKblFZyjPpPoXuTXLbywupE0hN7bFW/YzqSQK4\n5NfUBeMsFBBabprMnDb2WKt8RnXVAanpmrxYnJUCgkys7B5rW1IuR/07qwxITaZg0KGAIBMrs8c6\nTfmMOgWSOpQJaYom7TAORQFBplJWj3XSZzvEeIMdFaDa9gyLKmy4pbPGpWBwPgUEmUjZve5JUy5j\nu8GOC1BKLS2WRgWjKSA0UNE36yp63ReuOceJc+ffFC9cM9kO6qpusOMCVBsX6ssQ60PtY1PWTmXJ\naNrnDpRR3qCKHbM+pKrVsNe7ht1Iq7rBjgtQIZ9hIZ1AoAXj7BQQIhLiZl7GzbqKXvepIVVHh73e\nFdsNdlyA6i0TYjgLsyvcdfFJrR/k1PSaQ0XRlFFEQsx3D7spL67MsOPIJUGmkaqY1pj0nLHl7mdJ\n1VVq6eTausM4FAWEiIToeY8qVd19fdo5/yp2zE5zzqw32DIWymMLUE2hQBCGAkLJRt10QvS8058c\n5oSsOVTFTa3oc5a5UK4RQDgKBGEpIJRo3E0nRM877ca5WMCcfxU3tSLPGVt6qgzXt49AgSAoBYQS\njbvphOoFD944dxy5RKmMY8SWnirn02igeAoIJcpy0ymiF6wqmeMp/z9uba5AWiYFhBJVddPRQuZ4\nkwTNOtVIqiuljpZLAaFEVfbUtZA5Wt6gGWONpKZQeYnqKCAUZFwBM/Uq45MnaGoROjwVnaueAkIB\nxvUedcMIa+0bT7JuaT9rzp7g3MwGTs/v4Mz66wo9pxahw1EgiIcCQgHUeyzP2jee5B0nH8b8DAAz\nZ0/wjpMP8yYUGhS0CD09ZQ3FR7WMCqDeY3nWLe1fDQZd5mdYt7S/0PPGViOpTrp1hjQiiI9GCAVQ\n77E8a86eyPV6KFoPyk8jgvgpIBRAef/lOTezgZmUm/+5mQ2Fn1vrQdnU6VkEVx57mOtf/Bzzy8dY\nmtvMwav28NLmXVU3qzQKCAWosvfYttz40/M7+tYQANzWcnp+R4Wtkjqmjl557GFufPYPWHu28/ty\nwfJRbnz2DwBaExQUEApSRe+xjbnxZ9Zfx5tQepaRnK+bLQT1zBi6/sXPrQaDrrVnl7n+xc8FCwix\nj0AUEBqkrdlNZ9ZfpwBQsTqOCAbNLx/L9XpedRiBKMuoQZTdJGVrUsbQ0tzmXK/nNWoEEguNEBpE\n2U1xatq6Tt9ooAYLxVkdvGpPXw8e4MzMHAev2hPk+xc9AglBAaFBlN0Unyat6zQ9bbQ7bVPUHP/S\n3GYuWD6a+nosFBAaRLnx8WnKuk5byk+/tHlXYfP5RY9AQlBAKECVUwTKjY9LXdd1mrBIHJuiRyAh\nKCAE1qQpgpCqKEAXg7qt66jQXLGKHIGEoIAQWFOmCEJKLUB34iv4ya9jvtzoABH6wTtFjT6bvj4g\n2SggBDZsKmBxZYZtLy+0cl4/tQAdZzHvXIOyKpRWIeSDd4Dgo8+iy0rEvhFL+gUJCGb2ceALwAzw\nZ+7++YH3bwC+Afzf5KW/cvfPhjh3bIZNEYDhtHMKKUuhuW6F0qYFBAj34J3ux2nv5flZKmt9oA4b\nsaTf1BvTzGwG+CKwA7ga+ISZXZ1y6N+6+zXJn0YGA0gvizyo9xe8DbIWmiu6QmkdjBphLk65QF32\nJrI6bMSSfiFGCNuBw+7+CoCZfRm4CXg+wPeO0qh53MEpAgfAzvsesWeZhJRWgC5NGRVKYzdqhDmM\nwcjpyKqqjdZhI5b0C1G6YjPw457PjyavDfqomT1jZvvN7FeGfTMz221mT5jZE68uxbehqjvHu7gy\ni2OrU0D7luZWj9k5v8z+dx/n+7+8yMKQbJJYs0yKcGb9dbx54S7OzmzAgXP2DnzgR08VSjuyjDD7\nOeewvp/F7/zT9aujgdVgUIGiS0FIeGUtKj8FXO7uPzezncDXgSvSDnT3vcBegG1bt3pJ7cssbxaR\ndg93DBaga2sa6ji9I8zOFFHayMCx5J1zA++f9jX817++lCNr/kXRTR2rDhuxpF+IgHAMuKzn8y3J\na6vc/VTPx/vM7E/M7CJ3fzXA+UuVd6ORdg+nU4XS4bqL0DuOXJI6fbQwe5b97z7ONS8vpH790vLp\nopuYSR02Ykm/EAHhe8AVZvYeOoHgZuB3eg8ws03AT93dzWw7namq1wKcu3STbDTS7mGZxKjR5YZb\nZrD/ZnjKGNqGLzeULvaNWNJv6oDg7itmdjvwKJ200wfc/Tkz+1Ty/v3ALuDTZrYCLAM3u6f9KMdP\nU0BSlrTR5R/+mzc4sua3+cJz4P5Y6tfV8zdLYhBkDcHd9wH7Bl67v+fj+4D7QpyrapoCkjJ1R5fd\nxeEjPe/Nz61LnR6an1tXUuukabRTeQKaApKyjMoSuv4D7+PAU8+zcvatrKTZmTVc/4H3ldE0aSAF\nBJHIZN1J/P7LO4vKBw8dZmn5NPNz67j+A+9bfV0kLwUEkQj0VRnNsYHs/ZcvVB4AXviHRQWlhlBA\nyKhpj0GU6k0aBGLywj8s9k1bLS2f5sBTnSIFCgr1o4CQgZ5xICE1qdT0wUOH+9YwAFbOnuPgocMK\nCDWkgJCBnnEgIVRVU6iriKmdYZvgYtkcJ/m0NiDkmQKq62MQJQ5V1hPqKmpqR6mvzRKiuF3tZClQ\n12vYLuQ2FaiTfGIoLtdr1NTONK7/wPuYnem/jSj1tb5aOUJQgTopQsyLxEVN7Sj1tVlaGRBUoE5C\niTkI9Bo2tWMGf/zVx6a6kceQ+iphtDIgqECdTKsvENRA2q5meKvuUSzporE+gznWdoXWyoBwx8Yl\n7jp+ISs9SyizaApIxqs6U2hSg1M7ZucXwas6XTTWZzDH2q4itDIgANjAg0UGP89KG9biUeRDd2JZ\nHJ5G79TOH381vVJqlemio57BXOWNN9Z2FaGVAeHe1+c5MxAAzmC59xVow9p4ZT0Zbe0bT/Y9t3nm\n7AnecfJh3oSJz5e1plAdxZguGuszmGNtVxFaGRBC7SvQhrXRirhJD7Nuaf/qebrMz7BuaX/uc9V1\nWiiPGCulLs1t5oLlo6mvVynWdhWhlfsQQu0r0Ia10UbdpENbc/ZErtd7bbhlJrp9A0V7/+UL3Hjt\n1asjgvm5ddx47dWVLigfvGoPZ2b69wLF8AzmWNtVhFaOELLsK8iyNjBJtlKbTHOTzuvczAZmUr7v\nuZkNI7+uydNC48SWLhrrM5hjbVcRWhkQxu0ryLo2oA1ro016k57E6fkdfdNTAG5rOT2/47xj67J3\noGwxlLGO9RnMsbYrtFYGBBi9ryDr2kARG9aalLWU5yadV9pi9ZsX7hq5gN2GtYFJqYz1+dqy96BX\nawPCKHnWBkJuWGta1tKZ9dfxJgTPMhq6WH3hLpY2/Ze+Y9s8JZSHylj3a9Peg14KCCmqWhtoYtbS\nmfXXZQoAedJTs2YUPXjNrRoNZKQy1v2y7j1o2ihCASFFVWsDbc1aypueOmqxui1ZQqHFuC+hSln2\nHjRxFNHKtNNxds4vc9fFJ1mYXcFwFmZXuOvik4X30ttaZjtveuqwRemluS3B29YWKmPdb9geg97X\nR40i6koBYYid88vsf/dxvv/Li+x/9/FSpmzu2LjEOuufx21D1lLe9NTT8ztgdm3fa03NCy9LjPsS\nqpRl70ETdzBryigibS2znSc9tbNIfA9XHvvVRs3dxiC2fQlVyrL3oIk7mBUQItPGMttZ0lMHH0zf\nlrxwqc64n7GDV+3pW0OA+o9UFRCkcqPSU7V3oHwxbFCrg/5RxFHcZpjtWUOoY4dFAUGmEqqa6WB6\nqrKFqqENavl0b/pNyTbSorJMrJsuOnP2BMZb6aJr33hyou/XtgJzMRq1QU3SNSnbSCOEgjWpFMWg\nECWnVVcoLtqgll+Tso0UEArUtFIUg6YtOa0gEB9tUMuvSdlGCggFamIpil6TVDNVIAgr9AJwjA/O\niV2Tso0UEArU9FIUWauZ9hWYUyAIpogF4O7XKcsouyY9L0EBoUBNf4BOlmqmRReYa1pxsTyKqlCq\nDWr5NWVfjAJCgdrwAJ20aqZlZQk1sbhYHloAltCCpJ2a2cfN7EUzO2xmd6a8b2Z2T/L+M2Z2bYjz\nxq6qInlV6aaNlqVJ6X6TGLbQqwVgmdTUIwQzmwG+CPw6cBT4npk94u7P9xy2A7gi+fNh4E+Tvxuv\nDaUoqlooblK63yS0ACyhhZgy2g4cdvdXAMzsy8BNQG9AuAl4yN0d+K6ZbTCzBXdfDHB+qUAM+wea\nlO43zqhsIi0ASyghAsJm4Mc9nx/l/N5/2jGbgfMCgpntBnYDbNm4MUDzJKSY0kablO43yrhsIgUA\nCSW6RWV33wvsBdi2datX3BxJxBQIupqU7jeKnncsZQkREI4Bl/V8viV5Le8xEqHYq402Jd1vFGUT\nSVlCBITvAVeY2Xvo3ORvBn5n4JhHgNuT9YUPAye1fhC3orKF2rxvYFIqJ3E+/RwVY+qA4O4rZnY7\n8CgwAzzg7s+Z2aeS9+8H9gE7gcPAm8Bt055XwuvbUVyAtu8bmJSyifrF8nPUxKAUZA3B3ffRuen3\nvnZ/z8cO/F6Ic0l4fRlDBRq1b6Duv0hFUjZRvxh+jmIJSqFFt6gs5Sp6VNCryH0DTeyt9VI20Vti\n2H8SQ1AqggJCC1VVbK6ofQNN7a1Juhj2n8QQlIqgJ6a1SLe0RFkjgkEHr9rDmZm5vtdC7BtoewmL\ntinq5yiPYcGn7psiNUJogVj2EBS1b6CpvTVJF8P+k6ZuilRAaLiiy0/nVcS+gRimEKRcRfwc5VmH\niiEoFUEBoYHKXCguWpZf0qb21qQ8k6xDNXFTpAJCg8QyNRRK1l/SpvbWpDxNzRrKSwGhAcraR1C2\nPL+kTeytTaLp6behDF6n+ZQpR2jfOpQCQs3FtkYQkhaL81H6bTZp18kx4Pxamm1bh1LaaU09eM2t\npT6drApNTe0ryrAR1cef/jS3fWsbVx57uKKWxSXtOhmeBIW3tHEdSiOEmml6EOg16WJx1dMmVZ1/\n2MjJaNZoYdrrO3yE6Zya29Lq6TYFhJpoUuZQVpMsFlc9bTLJ+UMFkGHpt12hF0mrCHwh/n+Hpylv\n4S9+7fvhGltD1qk7F6dtW7f6t/e0a8g2qI2BYBq3fWtb6i/7qZJ+2fOef/AGB51R0IEP3p375pr2\nvQY5xj2/eTzX9816rhV7G7+YXc/cmRO5A0TW4BLi/zfkNY/RZ7a//Ul3/9AkX6sRQqSalkJalqoX\novNmq4RMd+wfUR0dmBHvCLX+ktbuWf8Fs2d+AeTruefp9Yf4/1Wa8nAKCJFRIJhOlbuWO4u2+bJV\nQgewbvrtsF5wqEXSLO3LGtjyBMU8/7+jRh1KU06nLKNIVF14rimqLHx2/Yufw1KCgWNDz19UJtVL\nm3dx4IN3c2puC45xam5L0CmRrO3LEjjyBMWs/7/dgHjB8lEMXx11KNNqNI0QKqYRQVhVTgeMyl4Z\ndv4iy24U2QtOa3eaLIEjT68/6/+vdh5PRgGhQk3eVFalqqYDRmWvDFPX+ezBdp9e+07Wriwx62dW\nj8ka2PIGxSz/v1WvJdWVAkIF2rSXoE0m7e3XdT57sN2TpqEWERRVAXcyCgglUgpps9W1tx/KNIEt\ndFBUBdzJKCCUQOsE9Ze191vX3n7TtD04T0oBoUBNrULaNlXvfpbJKDjnp4BQEC0YN4cyVqQtFBAK\noEXjemt7rfyqiwNKdRQQAlIgqL+218rX9Fi7KSAEoEDQHKNq5ffuQo41Y2Xa3r2mx9pNAWFCWjBu\npjrXyg/Ru9eGrnZTQJiA9hM0V51r5Yfo3WtDV7upuF1OCgbNVmVxvGmF6N3X+d8v09MIIaPVdQKl\nktZWlvn1Om9oCtG7r/O/X6angJCBFo3rL8/8el03NIUq11DXf79MTwFhBAWC5mhD9ox69zItBYQU\nWidonrZkz4zq3WvDmYyjgNBDqaTN1fbsGW04kyymyjIys41m9piZ/TD5+51DjvuRmT1rZk+b2RPT\nnLMo3VGBgkEztT17ZtSUWWyuPPYwt31rG7//zUu47Vvb9NjLEk07QrgT+Bt3/7yZ3Zl8/odDjv2X\n7v7qlOcrhArRNV/b59frMmWmkUy1pg0INwE3JB8/CHyH4QEhOlo0bpes2TNNnGuvy5RZGxb/Yzbt\nxrRL3X0x+fgnwKVDjnPggJk9aWa7R31DM9ttZk+Y2ROvLi1N2bzhFAwkTbeHesHyUQxf7aHWfdqi\nLlNmdRnJNNXYEYKZHQA2pbzV95Pk7m5m55eE7PiYux8zs0uAx8zs79398bQD3X0vsBdg29atw77f\nxBQIZJSm9lDrMmVWl5FMU40NCO5+47D3zOynZrbg7otmtgAcH/I9jiV/HzezrwHbgdSAUBSlkkoW\nTe6h1mHDmZ6FXK1pp4weAbpd7luBbwweYGbrzWy++zHwG8ChKc+bi4KBZDWsJ6oeajle2ryLAx+8\nm1NzW3CMU3NbOPDBu6MPZE0x7aLy54GvmNkngSPAbwOY2buAP3P3nXTWFb5mZt3z/S93/+spz5uZ\nMogkD/VQ8yliAb4OI5mmmioguPtrwL9Kef3/ATuTj18B/tk055mERgUyibrMtcdAKaLN08idyhoV\nyDTUQ82mqQvwbdaogKAMIpHyNHkBvq0aExAUDESKk7ZWoBTR5qn9E9M23DKjYCBSoGGb9V65+Ndr\nsdlNsqttQNhwy4wWjkVKMGyt4L0/eyxXiqiK1sWvllNGCgQi5Rm1VpCnPpQykuJXuxGCgoE0WYy9\n6BCb9epUfrvNajVCUDqpNFmsvegQm/WUkVQPtRkhaOFYmi7WXnSIchIqCVIP0Y8QFAikLYb3oo/y\n+9+8pNJd09Nu1lNJkHqIeoTw2twvVd0EkdIM6y0b1P7ZDCpaVw/RjxBEqlDFU9PSetGD6lwaQiVB\n4qeAIDKgqsXdwcJ64FjKcVqIlaJEPWUkUoUqF3df2ryLv/i173PPbx5naW5L6jFaiJWiKCCIDIgl\nRbIuz0GW5tCUkciAsoq2jVun0LMZpGwKCCIDykiRzLpOoYVYKZOmjEQGlJEiGesmNGk3jRBEUhTd\nM49lnUKkl0YIIhVQKQeJkQKCSAWUQSQx0pSRSAWUQSQxUkAQqYgyiCQ2mjISERFAAUFERBIKCCIi\nAiggiIhIQgFBREQABQQREUkoIIiICKCAICIiCQUEEREBFBBERCShgCAiIoACgoiIJKYKCGb2783s\nOTM7Z2YfGnHcx83sRTM7bGZ3TnNOEREpxrQjhEPAvwMeH3aAmc0AXwR2AFcDnzCzq6c8r4iIBDZV\n+Wt3fwHAzEYdth047O6vJMd+GbgJeH6ac4uISFhlPA9hM/Djns+PAh8edrCZ7QZ2J5/+42e2v/1Q\ngW0L4SLg1aobkYHaGZbaGZbaGc5Vk37h2IBgZgeATSlv7XH3b0x64mHcfS+wNzn3E+4+dG0iBnVo\nI6idoamdYamd4ZjZE5N+7diA4O43TvrNE8eAy3o+35K8JiIiESkj7fR7wBVm9h4zextwM/BICecV\nEZEcpk07/S0zOwr8c+CbZvZo8vq7zGwfgLuvALcDjwIvAF9x9+cynmLvNO0rSR3aCGpnaGpnWGpn\nOBO30dw9ZENERKSmtFNZREQABQQREUlEExBylMH4kZk9a2ZPT5NeNam6lOsws41m9piZ/TD5+51D\njqvkeo67PtZxT/L+M2Z2bVlty9nOG8zsZHL9njazuypo4wNmdtzMUvfsRHQtx7Uzhmt5mZl928ye\nT37P/2PKMZVfz4ztzH893T2KP8D76Wyo+A7woRHH/Qi4KOZ2AjPAy8B7gbcBPwCuLrmd/wO4M/n4\nTuC/x3I9s1wfYCewHzDgI8DfVfB/naWdNwD/u4qfxZ42/CpwLXBoyPuVX8uM7YzhWi4A1yYfzwMv\nRfqzmaWdua9nNCMEd3/B3V+suh3jZGznarkOd/8F0C3XUaabgAeTjx8E/m3J5x8ly/W5CXjIO74L\nbDCzhQjbWTl3fxx4fcQhMVzLLO2snLsvuvtTycdLdDIjNw8cVvn1zNjO3KIJCDk4cMDMnkzKXMQo\nrVzH1P9ZOV3q7ovJxz8BLh1yXBXXM8v1ieEaZm3DR5Opg/1m9ivlNC2XGK5lVtFcSzPbCmwD/m7g\nraiu54h2Qs7rWUYto1WBymB8zN2PmdklwGNm9vdJzyOYsst1TGpUO3s/cXc3s2H5xYVfz4Z7Crjc\n3X9uZjuBrwNXVNymuormWprZPwG+CnzG3U9V0YYsxrQz9/UsNSD49GUwcPdjyd/HzexrdIb1QW9g\nAdpZSrmOUe00s5+a2YK7LybD2eNDvkfh1zNFlusTQ8mTsW3o/SV0931m9idmdpG7x1QALYZrOVYs\n19LM1tK5yf5Pd/+rlEOiuJ7j2jnJ9azVlJGZrTez+e7HwG/QeSZDbGIo1/EIcGvy8a3AeSObCq9n\nluvzCPC7SUbHR4CTPVNgZRnbTjPbZNap/25m2+n8Tr1WcjvHieFajhXDtUzO/+fAC+5+95DDKr+e\nWdo50fUse3V8xKr5b9GZi/tH4KfAo8nr7wL2JR+/l06mxw+A5+hM4UTXTn8rE+ElOlkqVbTzl4C/\nAX4IHAA2xnQ9064P8CngU8nHRufBSi8DzzIi86zidt6eXLsfAN8FPlpBG78ELAJnkp/NT0Z6Lce1\nM4Zr+TE662rPAE8nf3bGdj0ztjP39VTpChERAWo2ZSQiIsVRQBAREUABQUREEgoIIiICKCCIiEhC\nAUFERAAFBBERSfx/DWOBc+XXr/cAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plot_decision_boundary(svc_gamma01, axis=[-1.5, 2.5, -1.0, 1.5])\n", - "plt.scatter(X[y==0,0], X[y==0,1])\n", - "plt.scatter(X[y==1,0], X[y==1,1])\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/11-SVM/07-What-is-RBF-Kernel/07-What-is-RBF-Kernel.ipynb b/11-SVM/07-What-is-RBF-Kernel/07-What-is-RBF-Kernel.ipynb new file mode 100644 index 0000000..492cdc1 --- /dev/null +++ b/11-SVM/07-What-is-RBF-Kernel/07-What-is-RBF-Kernel.ipynb @@ -0,0 +1,179 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 直观理解高斯核函数" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "x = np.arange(-4, 5, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-4, -3, -2, -1, 0, 1, 2, 3, 4])" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "y = np.array((x >= -2) & (x <= 2), dtype='int')" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 0, 1, 1, 1, 1, 1, 0, 0])" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAD8CAYAAABkbJM/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEs5JREFUeJzt3X+s3fV93/HnawZWtB8FhOcYG8+OdIvktJlLjwjV1Cpq\nYLFZVZNKrcy24maRXGul66QomxlS2nWahIq6TNEYyFlRiBYFoTYJXurOJV5W/ikt1w1xcKjnG6+Z\n7RjsJgvdFAsCee+P83V6uDm+93PvOfeeY/x8SEf3++Pz+Z4Xxscvn+/3nK9TVUiStJi/NukAkqTL\ng4UhSWpiYUiSmlgYkqQmFoYkqYmFIUlqYmFIkpqMpTCSbE9yPMlckn1D9ifJR7v9R5PcOrDvsSTn\nkrwwb86vJzmT5Pnucdc4skqSlmfkwkiyBngY2AFsBe5JsnXesB3ATPfYAzwysO/jwPZLHP4jVbWt\nexwcNaskafmuGsMxbgPmquokQJIngJ3AVwbG7AQ+Uf2vlT+b5Lok66vqbFU9k2TzGHJw44031ubN\nYzmUJF0xjhw58hdVtXaxceMojA3AqYH108C7GsZsAM4ucuxfSXIvMAt8sKr+z0KDN2/ezOzsbFNo\nSVJfkq+1jJvmi96PAG8HttEvlt8aNijJniSzSWbPnz+/mvkk6YoyjsI4A9w8sL6x27bUMW9SVS9X\n1RtV9V3gY/RPfQ0bt7+qelXVW7t20XdUkqRlGkdhPAfMJNmS5BpgF3Bg3pgDwL3dp6VuB16pqgVP\nRyVZP7D6PuCFS42VJK28ka9hVNXrSe4DDgFrgMeq6liSvd3+R4GDwF3AHPBt4P0X5yf5FPBu4MYk\np4Ffq6rfBn4zyTaggD8HfmnUrJKk5ctb6d/D6PV65UVvSVqaJEeqqrfYuGm+6C1JmiIWhiSpiYUh\nSWpiYUiSmlgYkqQmFoYkqYmFIUlqYmFIkppYGJKkJhaGJKmJhSFJamJhSJKaWBiSpCYWhiSpiYUh\nSWpiYUiSmlgYkqQmFoYkqYmFIUlqYmFIkppYGJKkJhaGJKmJhSFJamJhSJKaWBiSpCYWhiSpiYUh\nSWoylsJIsj3J8SRzSfYN2Z8kH+32H01y68C+x5KcS/LCvDk3JHk6yYnu5/XjyCpJWp6RCyPJGuBh\nYAewFbgnydZ5w3YAM91jD/DIwL6PA9uHHHofcLiqZoDD3bokaULG8Q7jNmCuqk5W1WvAE8DOeWN2\nAp+ovmeB65KsB6iqZ4BvDjnuTuDxbvlx4O4xZJUkLdM4CmMDcGpg/XS3balj5ltXVWe75ZeAdcMG\nJdmTZDbJ7Pnz59tTS5KW5LK46F1VBdQl9u2vql5V9dauXbvKySTpyjGOwjgD3DywvrHbttQx8718\n8bRV9/PciDklSSMYR2E8B8wk2ZLkGmAXcGDemAPAvd2npW4HXhk43XQpB4Dd3fJu4KkxZJUkLdPI\nhVFVrwP3AYeAF4Enq+pYkr1J9nbDDgIngTngY8A/uzg/yaeAPwJuSXI6yQe6XQ8CdyY5AdzRrUuS\nJiT9ywNvDb1er2ZnZycdQ5IuK0mOVFVvsXGXxUVvSdLkWRiSpCYWhiSpiYUhSWpiYUiSmlgYkqQm\nFoYkqYmFIUlqYmFIkppYGJKkJhaGJKmJhSFJamJhSJKaWBiSpCYWhiSpiYUhSWpiYUiSmlgYkqQm\nFoYkqYmFIUlqYmFIkppYGJKkJhaGJKmJhSFJamJhSJKaWBiSpCYWhiSpyVgKI8n2JMeTzCXZN2R/\nkny02380ya2LzU3y60nOJHm+e9w1jqySpOUZuTCSrAEeBnYAW4F7kmydN2wHMNM99gCPNM79SFVt\n6x4HR80qSVq+cbzDuA2Yq6qTVfUa8ASwc96YncAnqu9Z4Lok6xvnSpKmwDgKYwNwamD9dLetZcxi\nc3+lO4X1WJLrhz15kj1JZpPMnj9/frn/DZKkRUzzRe9HgLcD24CzwG8NG1RV+6uqV1W9tWvXrmY+\nSbqiXDWGY5wBbh5Y39htaxlz9aXmVtXLFzcm+RjwuTFklSQt0zjeYTwHzCTZkuQaYBdwYN6YA8C9\n3aelbgdeqaqzC83trnFc9D7ghTFklSQt08jvMKrq9ST3AYeANcBjVXUsyd5u/6PAQeAuYA74NvD+\nheZ2h/7NJNuAAv4c+KVRs0qSli9VNekMY9Pr9Wp2dnbSMSTpspLkSFX1Fhs3zRe9JUlTxMKQJDWx\nMCRJTSwMSVITC0OS1MTCkCQ1sTAkSU0sDElSEwtDktTEwpAkNbEwJElNLAxJUhMLQ5LUxMKQJDWx\nMCRJTSwMSVITC0OS1MTCkCQ1sTAkSU0sDElSEwtDktTEwpAkNbEwJElNLAxJUhMLQ5LUxMKQJDUZ\nS2Ek2Z7keJK5JPuG7E+Sj3b7jya5dbG5SW5I8nSSE93P68eRVZK0PFeNeoAka4CHgTuB08BzSQ5U\n1VcGhu0AZrrHu4BHgHctMncfcLiqHuyKZB/wr0bNO8xnv3iGhw4d5+vfusBN113Lh957C3f/6IaV\neKq3RC6OPgmHfwNeOQ0/uBHe82F4589POpW5zLWipvX1uJq5Ri4M4DZgrqpOAiR5AtgJDBbGTuAT\nVVXAs0muS7Ie2LzA3J3Au7v5jwP/gxUojM9+8Qz3f/rLXPjOGwCc+dYF7v/0lwEm+pthWnNx9En4\nr/8cvnOhv/7Kqf46TPZFbS5zraBpfT2udq5xnJLaAJwaWD/dbWsZs9DcdVV1tlt+CVg3hqzf56FD\nx7/3i33Rhe+8wUOHjq/E0zWb1lwc/o2/ejFf9J0L/e2TZK6lMdeSTOvrcbVzXRYXvbt3JjVsX5I9\nSWaTzJ4/f37Jx/76ty4saftqmdZcvHJ6adtXi7mWxlxLMq2vx9XONY7COAPcPLC+sdvWMmahuS93\np63ofp4b9uRVtb+qelXVW7t27ZLD33TdtUvavlqmNRc/uHFp21eLuZbGXEsyra/H1c41jsJ4DphJ\nsiXJNcAu4MC8MQeAe7tPS90OvNKdblpo7gFgd7e8G3hqDFm/z4feewvXXr3mTduuvXoNH3rvLSvx\ndM2mNRfv+TBcPe8349XX9rdPkrmWxlxLMq2vx9XONfJF76p6Pcl9wCFgDfBYVR1Lsrfb/yhwELgL\nmAO+Dbx/obndoR8EnkzyAeBrwIpc8bp4YWjaPv0wrbm+d+Fx2j7FYi5zraBpfT2udq70Lw+8NfR6\nvZqdnZ10DEm6rCQ5UlW9xcZdFhe9JUmTZ2FIkppYGJKkJhaGJKmJhSFJamJhSJKaWBiSpCYWhiSp\niYUhSWpiYUiSmlgYkqQmFoYkqYmFIUlqYmFIkppYGJKkJhaGJKmJhSFJamJhSJKaWBiSpCYWhiSp\niYUhSWpiYUiSmlgYkqQmFoYkqYmFIUlqYmFIkppYGJKkJiMVRpIbkjyd5ET38/pLjNue5HiSuST7\nFpufZHOSC0me7x6PjpJTkjS6Ud9h7AMOV9UMcLhbf5Mka4CHgR3AVuCeJFsb5n+1qrZ1j70j5pQk\njWjUwtgJPN4tPw7cPWTMbcBcVZ2sqteAJ7p5rfMlSVNg1MJYV1Vnu+WXgHVDxmwATg2sn+62LTZ/\nS3c66g+T/MSIOSVJI7pqsQFJPg+8bciuBwZXqqqS1HKDzJt/FthUVd9I8mPAZ5O8o6r+cki+PcAe\ngE2bNi336SVJi1i0MKrqjkvtS/JykvVVdTbJeuDckGFngJsH1jd22wCGzq+qV4FXu+UjSb4K/BAw\nOyTffmA/QK/XW3ZhSZIWNuopqQPA7m55N/DUkDHPATNJtiS5BtjVzbvk/CRru4vlJHk7MAOcHDGr\nJGkEoxbGg8CdSU4Ad3TrJLkpyUGAqnoduA84BLwIPFlVxxaaD/wkcDTJ88DvAHur6psjZpUkjSBV\nb52zOL1er2Znv++slSRpAUmOVFVvsXF+01uS1MTCkCQ1sTAkSU0sDElSEwtDktTEwpAkNbEwJElN\nLAxJUhMLQ5LUxMKQJDWxMCRJTSwMSVITC0OS1MTCkCQ1sTAkSU0sDElSEwtDktTEwpAkNbEwJElN\nLAxJUhMLQ5LUxMKQJDWxMCRJTSwMSVITC0OS1MTCkCQ1sTAkSU1GKowkNyR5OsmJ7uf1lxi3Pcnx\nJHNJ9g1s/7kkx5J8N0lv3pz7u/HHk7x3lJySpNGN+g5jH3C4qmaAw936myRZAzwM7AC2Avck2drt\nfgH4WeCZeXO2AruAdwDbgf/UHUeSNCGjFsZO4PFu+XHg7iFjbgPmqupkVb0GPNHNo6perKrjlzju\nE1X1alX9L2CuO44kaUJGLYx1VXW2W34JWDdkzAbg1MD66W7bQpYzR5K0gq5abECSzwNvG7LrgcGV\nqqokNa5grZLsAfYAbNq0abWfXpKuGIsWRlXdcal9SV5Osr6qziZZD5wbMuwMcPPA+sZu20Ka51TV\nfmA/QK/XW/XCkqQrxainpA4Au7vl3cBTQ8Y8B8wk2ZLkGvoXsw80HHdXkr+eZAswA/zJiFklSSMY\ntTAeBO5McgK4o1snyU1JDgJU1evAfcAh4EXgyao61o17X5LTwI8Dv5fkUDfnGPAk8BXgvwG/XFVv\njJhVkjSCVL11zuL0er2anZ2ddAxJuqwkOVJVvcXG+U1vSVITC0OS1MTCkCQ1sTAkSU0sDElSEwtD\nktTEwpAkNbEwJElNLAxJUhMLQ5LUxMKQJDWxMCRJTSwMSVITC0OS1MTCkCQ1sTAkSU0sDElSEwtD\nktTEwpAkNbEwJElNLAxJUhMLQ5LUxMKQJDWxMCRJTSwMSVITC0OS1MTCkCQ1GakwktyQ5OkkJ7qf\n119i3PYkx5PMJdk3sP3nkhxL8t0kvYHtm5NcSPJ893h0lJySpNGN+g5jH3C4qmaAw936myRZAzwM\n7AC2Avck2drtfgH4WeCZIcf+alVt6x57R8wpSRrRqIWxE3i8W34cuHvImNuAuao6WVWvAU9086iq\nF6vq+IgZJEmrYNTCWFdVZ7vll4B1Q8ZsAE4NrJ/uti1mS3c66g+T/MSIOSVJI7pqsQFJPg+8bciu\nBwZXqqqS1JhynQU2VdU3kvwY8Nkk76iqvxySbw+wB2DTpk1jenpJ0nyLFkZV3XGpfUleTrK+qs4m\nWQ+cGzLsDHDzwPrGbttCz/kq8Gq3fCTJV4EfAmaHjN0P7O/ynE/ytUX+kxZyI/AXI8xfKeZaGnMt\njbmW5q2Y6++2DFq0MBZxANgNPNj9fGrImOeAmSRb6BfFLuAfLXTQJGuBb1bVG0neDswAJxcLU1Vr\nlxb/+553tqp6i49cXeZaGnMtjbmW5krONeo1jAeBO5OcAO7o1klyU5KDAFX1OnAfcAh4EXiyqo51\n496X5DTw48DvJTnUHfcngaNJngd+B9hbVd8cMaskaQQjvcOoqm8A7xmy/evAXQPrB4GDQ8Z9BvjM\nkO2/C/zuKNkkSePlN73fbP+kA1yCuZbGXEtjrqW5YnOlalwfbJIkvZX5DkOS1MTCuIQkH0xSSW6c\ndBaAJP82ydHuy4x/kOSmSWcCSPJQkj/rsn0myXVTkGnoPcommGfovdQmLcljSc4leWHSWS5KcnOS\nLyT5Svf/8FcnnQkgyQ8k+ZMkX+py/ZtJZxqUZE2SLyb53Eo+j4UxRJKbgX8A/O9JZxnwUFW9s6q2\nAZ8DPjzpQJ2ngR+uqncC/xO4f8J5YOF7lK2qRe6lNmkfB7ZPOsQ8rwMfrKqtwO3AL0/Jr9erwE9V\n1d8DtgHbk9w+4UyDfpX+p1BXlIUx3EeAfwlMzQWeed9y/xtMSbaq+oPuo9MAz9L/YuZETdk9yi55\nL7VJq6pngKn6uHpVna2qP+2W/y/9PwRbbiW0oqrv/3WrV3ePqXgNJtkI/EPgP6/0c1kY8yTZCZyp\nqi9NOst8Sf5dklPAP2Z63mEM+qfA7086xJRZ7r3UrnhJNgM/CvzxZJP0dad9nqd/R4unq2oqcgH/\ngf5fcL+70k806je9L0uL3B/rX9M/HbXqFspVVU9V1QPAA0nup/9lyF+bhlzdmAfon0745LRk0uUr\nyd+k/12sfzHsHnKTUFVvANu663SfSfLDVTXR6z9Jfho4191C6d0r/XxXZGFc6v5YSX4E2AJ8KQn0\nT6/8aZLbquqlSeUa4pP0vwi5KoWxWK4kvwj8NPCeWqXPaS/h12rSlnwvtStdkqvpl8Unq+rTk84z\nX1V9K8kX6F//mfQHBv4+8DNJ7gJ+APjbSf5LVf2TlXgyT0kNqKovV9XfqarNVbWZ/umDW1ejLBaT\nZGZgdSfwZ5PKMijJdvpvh3+mqr496TxT6Hv3UktyDf17qR2YcKaplf7f1H4beLGq/v2k81yUZO3F\nTwAmuRa4kyl4DVbV/VW1sfvzahfw31eqLMDCuJw8mOSFJEfpnzKbio8bAv8R+FvA09Pyz+kucI+y\nVbfQvdQmLcmngD8CbklyOskHJp2J/t+YfwH4qfzVP9F812KTVsF64Avd6+85+tcwVvQjrNPIb3pL\nkpr4DkOS1MTCkCQ1sTAkSU0sDElSEwtDktTEwpAkNbEwJElNLAxJUpP/D0Dfsx14/G8hAAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(x[y==0], [0]*len(x[y==0]))\n", + "plt.scatter(x[y==1], [0]*len(x[y==1]))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def gaussian(x, l):\n", + " gamma = 1.0\n", + " return np.exp(-gamma * (x-l)**2)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "l1, l2 = -1, 1\n", + "\n", + "X_new = np.empty((len(x), 2))\n", + "for i, data in enumerate(x):\n", + " X_new[i, 0] = gaussian(data, l1)\n", + " X_new[i, 1] = gaussian(data, l2)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEDNJREFUeJzt3X+s3XV9x/Hna21JanStk6vRtozOINpI2fCKbJoNRzZa\nFlI1hoA/yIgZIRPxLwMuGRrcosYsmgakaQghJotNMwmWDWULRlnC2LgN2IKk5g4jbTHhitIl2AQK\n7/1xDnC5tj3nwPnR8+nzkTS353M+uef9yWme+d5z7+lNVSFJasvvTHoASdLwGXdJapBxl6QGGXdJ\napBxl6QGGXdJapBxl6QGGXdJapBxl6QGLZ/UA5966ql1+umnT+rhJWkq7d69+5dVNdNr38Tifvrp\npzM3Nzeph5ekqZTk5/3s82UZSWqQcZekBhl3SWqQcZekBhl3SWpQz7gnuTXJk0kePsb9SbI1yXyS\nPUnOGf6YA9izE77+bvji6s7HPTsnOo4kTUI/V+63AZuOc/9m4IzunyuBm1/7WK/Snp1w5zVwaD9Q\nnY93XmPgJZ10esa9qu4FfnWcLVuAb1XH/cDqJG8d1oADuecGeO7wK9eeO9xZl6STyDBec18D7F90\n+0B37bckuTLJXJK5hYWFITz0EocODLYuSY0a6zdUq2p7Vc1W1ezMTM93zw5u1drB1iWpUcOI+0Fg\n3aLba7tr43fB9bBi5SvXVqzsrEvSSWQYcd8FXN79qZnzgENV9YshfN7BbbwELt4Kq9YB6Xy8eGtn\nXZJOIj3/47Ak3wbOB05NcgD4ArACoKq2AXcBFwHzwG+AK0Y1bF82XmLMJZ30esa9qi7rcX8Bnx7a\nRJKk18x3qEpSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7\nJDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXI\nuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDWor7gn2ZRkX5L5JNcd5f5VSe5M8uMkjyS5YvijSpL6\n1TPuSZYBNwGbgQ3AZUk2LNn2aeAnVXU2cD7wT0lOGfKskqQ+9XPlfi4wX1WPVdWzwA5gy5I9Bbwh\nSYDXA78Cjgx1UklS3/qJ+xpg/6LbB7pri90IvAt4AtgLfLaqXlj6iZJcmWQuydzCwsKrHFmS1Muw\nvqF6IfAQ8DbgD4Ebk/zu0k1Vtb2qZqtqdmZmZkgPLUlaqp+4HwTWLbq9tru22BXA7dUxD/wMeOdw\nRpQkDaqfuD8AnJFkffebpJcCu5bseRy4ACDJW4AzgceGOagkqX/Le22oqiNJrgbuBpYBt1bVI0mu\n6t6/DfgScFuSvUCAa6vqlyOcW5J0HD3jDlBVdwF3LVnbtujvTwB/OdzRJEmvlu9QlaQGGXdJapBx\nl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QG\nGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJapBxl6QGGXdJ\napBxl6QGGXdJalBfcU+yKcm+JPNJrjvGnvOTPJTkkSQ/Gu6YkqRBLO+1Icky4CbgL4ADwANJdlXV\nTxbtWQ18E9hUVY8nefOoBpYk9dbPlfu5wHxVPVZVzwI7gC1L9nwMuL2qHgeoqieHO6YkaRD9xH0N\nsH/R7QPdtcXeAbwxyQ+T7E5y+dE+UZIrk8wlmVtYWHh1E0uSehrWN1SXA+8B/gq4EPj7JO9Yuqmq\ntlfVbFXNzszMDOmhJUlL9XzNHTgIrFt0e213bbEDwFNV9QzwTJJ7gbOBnw5lSknSQPq5cn8AOCPJ\n+iSnAJcCu5bs+S7wgSTLk7wOeB/w6HBHlST1q+eVe1UdSXI1cDewDLi1qh5JclX3/m1V9WiS7wN7\ngBeAW6rq4VEOLkk6tlTVRB54dna25ubmJvLYkjStkuyuqtle+3yHqiQ1yLhLUoOMuyQ1yLhLUoOM\nuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1\nyLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhL\nUoP6inuSTUn2JZlPct1x9r03yZEkHx3eiJKkQfWMe5JlwE3AZmADcFmSDcfY91Xg34c9pCRpMP1c\nuZ8LzFfVY1X1LLAD2HKUfZ8BvgM8OcT5JEmvQj9xXwPsX3T7QHftJUnWAB8Gbj7eJ0pyZZK5JHML\nCwuDzipJ6tOwvqH6DeDaqnrheJuqantVzVbV7MzMzJAeWpK01PI+9hwE1i26vba7ttgssCMJwKnA\nRUmOVNUdQ5lSkjSQfuL+AHBGkvV0on4p8LHFG6pq/Yt/T3Ib8K+GXZImp+fLMlV1BLgauBt4FNhZ\nVY8kuSrJVaMe8Jj27ISvvxu+uLrzcc/OiY2iAfncSSPXz5U7VXUXcNeStW3H2PvXr32sHvbshDuv\ngecOd24f2t+5DbDxkpE/vF4DnztpLKbzHar33PByHF703OHOuk5sPnfSWExn3A8dGGxdJw6fO2ks\npjPuq9YOtq4Th8+dNBbTGfcLrocVK1+5tmJlZ10nNp87aSymM+4bL4GLt8KqdUA6Hy/e6jfkpoHP\nnTQWqaqJPPDs7GzNzc1N5LElaVol2V1Vs732TeeVuyTpuIy7JDXIuEtSg4y7JDXIuEtSg4y7JDXI\nuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtS\ng4y7JDXIuEtSg4y7JDXIuEtSg4y7JDWor7gn2ZRkX5L5JNcd5f6PJ9mTZG+S+5KcPfxRJUn96hn3\nJMuAm4DNwAbgsiQblmz7GfBnVXUW8CVg+7AHlST1r58r93OB+ap6rKqeBXYAWxZvqKr7qurX3Zv3\nA2uHO6YkaRD9xH0NsH/R7QPdtWP5FPC9o92R5Mokc0nmFhYW+p9SkjSQoX5DNckH6cT92qPdX1Xb\nq2q2qmZnZmaG+dCSpEWW97HnILBu0e213bVXSLIRuAXYXFVPDWc8SdKr0c+V+wPAGUnWJzkFuBTY\ntXhDktOA24FPVtVPhz+mJGkQPa/cq+pIkquBu4FlwK1V9UiSq7r3bwOuB94EfDMJwJGqmh3d2JKk\n40lVTeSBZ2dna25ubiKPLUnTKsnufi6efYeqJDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXI\nuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtS\ng4y7JDXIuEtSg4y7JDXIuEtSg4y7JDXIuEtSg4y7JDVo+aQHeLXuePAgX7t7H088fZi3rV7J5y48\nkw/90ZpJjyVJx7ZnJ9xzAxw6AKvWwgXXw8ZLRvJQUxn3Ox48yOdv38vh554H4ODTh/n87XsBDLyk\nE9OenXDnNfDc4c7tQ/s7t2EkgZ/Kl2W+dve+l8L+osPPPc/X7t43oYkkqYd7bng57C967nBnfQT6\ninuSTUn2JZlPct1R7k+Srd379yQ5Z/ijvuyJpw8fc/2OBw/y/q/8gPXX/Rvv/8oPuOPBg6McRa/G\nnp3w9XfDF1d3Pu7ZOemJpNE7dGCw9deoZ9yTLANuAjYDG4DLkmxYsm0zcEb3z5XAzUOe8xVWrjj6\n2CuWhc/fvpeDTx+mePnlGgN/AnnxS9ND+4F6+UtTA6/WrVo72Ppr1M+V+7nAfFU9VlXPAjuALUv2\nbAG+VR33A6uTvHXIs77k8JEXjrr+7PPlyzUnujF/aSqdMC64HlasfOXaipWd9RHoJ+5rgP2Lbh/o\nrg26hyRXJplLMrewsDDorC+pGmz/sV7G0QSM+UtT6YSx8RK4eCusWgek8/HirW38tExVbQe2A8zO\nzg6Y6JctS3h+gMK/bfXK3ps0HqvWdl+SOcq61LqNl4ws5kv1c+V+EFi36Pba7tqge4bmsvetO+r6\n+9/+e6xcsewVaytXLONzF545qlE0qDF/aSqdrPqJ+wPAGUnWJzkFuBTYtWTPLuDy7k/NnAccqqpf\nDHnWl/zDh87iE+edxrIE6FzJf+K80/jnv/ljvvyRs1izeiUB1qxeyZc/cpY/+34iGfOXptLJKtXH\nyxtJLgK+ASwDbq2qf0xyFUBVbUsS4EZgE/Ab4Iqqmjve55ydna25ueNukSQtkWR3Vc322tfXa+5V\ndRdw15K1bYv+XsCnBx1SkjQaU/kOVUnS8Rl3SWqQcZekBhl3SWqQcZekBhl3SWqQcZekBvX1JqaR\nPHCyAPx8CJ/qVOCXQ/g80+JkOy+cfGf2vO17LWf+/aqa6bVpYnEfliRz/bxbqxUn23nh5Duz523f\nOM7syzKS1CDjLkkNaiHu2yc9wJidbOeFk+/Mnrd9Iz/z1L/mLkn6bS1cuUuSlpiauCfZlGRfkvkk\n1x3l/iTZ2r1/T5JzJjHnsPRx3o93z7k3yX1Jzp7EnMPS67yL9r03yZEkHx3nfKPQz5mTnJ/koSSP\nJPnRuGccpj7+Ta9KcmeSH3fPe8Uk5hyWJLcmeTLJw8e4f7TNqqoT/g+dXxLyv8AfAKcAPwY2LNlz\nEfA9IMB5wH9Peu4Rn/dPgDd2/7659fMu2vcDOr9b4KOTnnsMz/Fq4CfAad3bb5703CM+798BX+3+\nfQb4FXDKpGd/DWf+U+Ac4OFj3D/SZk3Llfu5wHxVPVZVzwI7gC1L9mwBvlUd9wOrk7x13IMOSc/z\nVtV9VfXr7s376fze2mnVz/ML8BngO8CT4xxuRPo588eA26vqcYCqmuZz93PeAt7Q/c1ur6cT9yPj\nHXN4qupeOmc4lpE2a1rivgbYv+j2ge7aoHumxaBn+RSdK4Bp1fO8SdYAHwZuHuNco9TPc/wO4I1J\nfphkd5LLxzbd8PVz3huBdwFPAHuBz1bVC+MZbyJG2qy+fs2eTlxJPkgn7h+Y9Cwj9g3g2qp6Id1f\njH4SWA68B7gAWAn8V5L7q+qnkx1rZC4EHgL+HHg78B9J/rOq/m+yY02naYn7QWDdottru2uD7pkW\nfZ0lyUbgFmBzVT01ptlGoZ/zzgI7umE/FbgoyZGqumM8Iw5dP2c+ADxVVc8AzyS5FzgbmMa493Pe\nK4CvVOcF6fkkPwPeCfzPeEYcu5E2a1pelnkAOCPJ+iSnAJcCu5bs2QVc3v0O9HnAoar6xbgHHZKe\n501yGnA78MkGruR6nreq1lfV6VV1OvAvwN9Ocdihv3/T3wU+kGR5ktcB7wMeHfOcw9LPeR+n81UK\nSd4CnAk8NtYpx2ukzZqKK/eqOpLkauBuOt91v7WqHklyVff+bXR+guIiYB74DZ2rgKnU53mvB94E\nfLN7NXukpvQ/X+rzvE3p58xV9WiS7wN7gBeAW6rqqD9Wd6Lr8zn+EnBbkr10foLk2qqa2v8tMsm3\ngfOBU5McAL4ArIDxNMt3qEpSg6blZRlJ0gCMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1\n6P8B0TWCEyVMrKwAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_new[y==0,0], X_new[y==0,1])\n", + "plt.scatter(X_new[y==1,0], X_new[y==1,1])\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/11-SVM/08-RBF-Kernel-in-scikit-learn/08-RBF-Kernel-in-scikit-learn.ipynb b/11-SVM/08-RBF-Kernel-in-scikit-learn/08-RBF-Kernel-in-scikit-learn.ipynb new file mode 100644 index 0000000..237ee9b --- /dev/null +++ b/11-SVM/08-RBF-Kernel-in-scikit-learn/08-RBF-Kernel-in-scikit-learn.ipynb @@ -0,0 +1,347 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## scikit-learn 中的 RBF 核" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2wXHWd5/H3hxB276KViGAMN7kbrEoxwyhPcwsppVYR\n5GnKTZzZpUBXqV2tLLXjOLpTlJl1i6VwpyY7luMuOygTGUqcGqEyJWDUKAPRKWZxcUkEAghIBCxy\njcSnREZSQ4jf/aPPhe5OP5zuPn3O73R/XlW3bvd5yP1x6D7f38P39zuKCMzMzBYdVXUBzMwsLQ4M\nZmbWwoHBzMxaODCYmVkLBwYzM2vhwGBmZi0cGMzMrIUDg5mZtXBgMDOzFkdXXYBhHH/88bFmzZqq\ni2FmVis7d+78aUSc0O+4WgaGNWvWsGPHjqqLYWZWK5J+mOc4dyWZmVkLBwYzM2vhwGBmZi0cGMzM\nrEUhgUHSTZL2SXqky/73Stol6WFJ35Z0WtO+Z7LtD0ryiLKZWcWKajF8Hriox/6ngbdFxJuATwCb\n2/afGxGnR8R8QeUxM7MhFZKuGhH3SFrTY/+3m97eB6wq4u+amVnxqpjH8AHg603vA7hb0mHgLyOi\nvTVhNXHHAwt88s4n+NH+g5y4fIarLjyZ9WfMVl0sMxtQqYFB0rk0AsM5TZvPiYgFSa8D7pL0eETc\n0+HcDcAGgLm5uVLKa/nd8cACf3zbwxw8dBiAhf0H+ePbHgZwcDCrmdKykiSdCtwIrIuIny1uj4iF\n7Pc+4HbgrE7nR8TmiJiPiPkTTug7o9tK9sk7n3g5KCw6eOgwn7zziYpKZGbDKiUwSJoDbgPeFxHf\nb9p+rKRXL74GLgA6ZjZZ2n60/+BA280sXYV0JUm6BXg7cLykPcB/A5YCRMQNwNXAa4HPSAJ4KctA\nWgHcnm07GvhiRHyjiDJZQ1n9/icun2GhQxA4cflM4X/LzMarqKyky/vs/yDwwQ7bnwJOO/IMK0KZ\n/f5XXXhyy98CmFm6hKsuPLnQv2Nm4+eZzxOszH7/9WfM8qe/+yZml88gYHb5DH/6u2/ywLNZDdVy\n2W3Lp+x+//VnzDoQmE0AtxgmWLf+fff7m1kvDgwT7KoLT2Zm6ZKWbe73N7N+3JU0wRa7dTwb2cwG\n4cAw4dzvb2aDcleSmZm1cGAwM7MWDgxmZtbCgcHMzFo4MJiZWQtnJU04PzzHzAblwDDB/PAcMxuG\nA8ME67WI3qQHhuaW0rKZpUiw/4VDbjWZ5eDAMMGm9eE57S2l/QcPvbzPrSaz/jz4PMGmdRG9Ti2l\nZn7kqFlvhQQGSTdJ2iep42M51XCdpN2Sdkk6s2nfRZKeyPZtLKI81lDkInp3PLDAWzd9k5M2fo23\nbvomdzywUFQxC5enRVRUq6lO18Usr6JaDJ8HLuqx/2JgbfazAfgsgKQlwPXZ/lOAyyWdUlCZpl5R\nD89Z7JpZ2H+Q4JXumFRvgnlaREW0mup2XczyKurRnvdIWtPjkHXAFyIigPskLZe0ElgD7M4e8Ymk\nW7Njv1dEuayYRfTqNojd6TGjzUZZerx5UPsoicMRLftTvi5meZU1+DwLPNv0fk+2rdP2N3f6ByRt\noNHaYG5ubjyltI66dbss7D/ISRu/llymT/ty40VlJbUParcHhUWTPrhvk682WUkRsRnYDDA/P9/5\nG2kDyzMB7sTlMyx0udk1d6FAOpk+41huvN+g9qJJH9y3yVdWVtICsLrp/apsW7ftVoK8feSdBrHb\nTUOmT96WwLm/ccKYS3IkD4JbkcoKDFuB92fZSWcDByJiL3A/sFbSSZKOAS7LjrUS9Bo7aNY+iN3N\npHeh5G0JfOvxn4y5JK08CG5FKypd9Rbg/wInS9oj6QOSrpR0ZXbINuApYDfwOeA/AUTES8CHgDuB\nx4AtEfFoEWWy/gaZALf+jFnu3fgOnt70O8x2uUEGTHRtNU/LCcoPkHkDvFleRWUlXd5nfwC/32Xf\nNhqBw0rWbeygX824V9ZPiuMNRWkf1O6UlQTljzFM6wx3Gx/PfJ5iw06Aa+5a6mSSa6vNLadPXXpa\nYRMIRzGtM9xtfBwYptgoE+AWb5DdxhymobZa1ATCURU5w90MapSuauMxalrnsN1Rk2IcabHDlAHw\nczesMA4MNpJO4w2urY5HrzknKQQomxwODDaSKmqr0/hUOj90ycrkwGAjK7O2OuoNsq5BpW7rVVm9\nOTBYrYxyg0y51t0vYDkl1crkrCSrlV4L+vWT6kSwPDOXnZJqZXJgmEBlrZtTxfo83W6EysrTS6q1\n7jwByympViYHhoQUcaMta92cqtbnuerCkzvOnQjoW/NPtdadJ2ClMmfCpoMDQyKKutGW1V1SVbfM\n+jNm6bbmer+af6q17rwBq3nW9b0b3+GgYGPjwJCIom60vfrgi+z2qbJbpttSHP1q/qnWulMNWDa9\nnJWUiKJutN1mIotXBmiLyMapcsbzKJPqUpwI5pnLlhoHhkQUdaPtdNMUHNH9MmoOfJUznsu6kZY5\n5yHFgGXTy4GhJP1uMkXdaDvdNLulco7S7VN1LXfcN9KU5zyYjZuiywPNB/pHpIuA/wUsAW6MiE1t\n+68C3pu9PRr4TeCEiPi5pGeA54HDwEsRMd/v783Pz8eOHTtGLndZ2m8y0Ljpt/dvj6uG+tZN3+wY\nHGaXz3DvxneM/O9PIl8zm0SSdua5x47cYpC0BLgeeCewB7hf0taI+N7iMRHxSeCT2fHvAj4aET9v\n+mfOjYifjlqWVOWdrTuuWrAXuhtcqnMezMpQRFbSWcDuiHgqIl4EbgXW9Tj+cuCWAv5ubVR9k0k1\nGydlqc55MCtDEWMMs8CzTe/3AG/udKCkfwFcROM5z4sCuFvSYeAvI2JzAWVKSgrPLPDg5mDcyrJp\nVvbg87uAe9u6kc6JiAVJrwPukvR4RNzTfqKkDcAGgLm5uXJKWxDfZOpn2MH1uq7eatasiMCwAKxu\ner8q29bJZbR1I0XEQvZ7n6TbaXRNHREYspbEZmgMPo9e7PJUncFjwxm0leVMJpsURQSG+4G1kk6i\nERAuA97TfpCkZcDbgH/XtO1Y4KiIeD57fQFwbQFlqky3GqO7ciafn5lgk2LkwBARL0n6EHAnjXTV\nmyLiUUlXZvtvyA59N/B3EfGrptNXALdLWizLFyPiG6OWqSquMVZs1xbYfi0c2APLVsF5V8Opl5b2\n56tOMjArSiFjDBGxDdjWtu2GtvefBz7ftu0p4LQiypAC1xgrtGsLfOXDcCi7CR94tvEeSgsOKSQZ\nmBXBi+gVyDXGCm2/9pWgsOjQwcb2kngxPJsUDgwFcu57hQ7sGWz7GHi+iE0Kr5VUIKelVmjZqkb3\nUaftJXKSwRSpeExrnBwYClR1WupU59Cfd3XrGAPA0pnGdrOiJTCmNU6FLKJXtrotoleGvAv1TbQJ\nrsFZYj79xi4t1NXw0UeK+zsFf6ZLW0TP0uCMKBpfGAcCK0MZY1oVtko8+DwhnBFlVqJuY1dFjmlV\nmGnnwDAhnBFVL3c8sFDoM7itZOdd3RjDalb0mFaFmXYODBPCOfT1sTgetLD/IMErM+QdHGrk1Evh\nXdc1xhRQ4/e7riu2i6eMVkkXHmOYEFVnRFl+Hg+aEOMe06ow086BYYI4h74ePB5kuSwGnQoy7RwY\nzErmNZUst4oy7TzGUCAPKOawa0sjB/ya5Y3fu7ZUXaLSeTzIUucJbgXxBLMc2vOyAZYcA8e8Cg7+\nYqompRU9S32qZ71bbnknuDkwFOStm77ZsXtgicSvI/xlhe6zRZstnSk+u2MC9Lrx17pS4tnqpcob\nGArpSpJ0kaQnJO2WtLHD/rdLOiDpwezn6rzn1kW3gcPDEU5JXJQn/7rkpbLroF96a68sp6QttiAP\nPAvEKzN7p7B7MTUjBwZJS4DrgYuBU4DLJZ3S4dB/iIjTs59rBzw3eXkGDmvxZR2nvPnXJS6VXQf9\nbvy1zXJK4Bka1lkRLYazgN0R8VREvAjcCqwr4dxS9RtY7jSg2EnyX9Zx6jRbtJOSl8pOXbfPzML+\ng7x10zdZNrO04/7ks5wSeIaGdVZEYJgFmjuO92Tb2r1F0i5JX5f0WwOeW6k8M1XbH9KypPEc6yMk\n/2Udp/bZojPHwVFtNzUvlX2EXp+Zhf0H+dWLL7H0qNbP29KjxAsvvpR2hlyFM3utt7LSVb8LzEXE\nqcD/Bu4Y9B+QtEHSDkk7fvKTnxRewF7y9uGuP2OWeze+g6c3/Q6fuvQ0pyR2cuqljWWJr9kPH3sa\n1n9mvMsKTIB+rdFDh4NX/fOjX66ULJ9ZCoJfvHAo7fGtMtYbsqEUMcFtAVjd9H5Vtu1lEfHLptfb\nJH1G0vF5zm06bzOwGRpZSQWUO7dh+nC9REVOXiq7r+bPUqfMN4D9LxzigasvABoZcvsPHmrZn+SS\nGxXO7LXeiggM9wNrJZ1E46Z+GfCe5gMkvR54LiJC0lk0Wio/A/b3OzcFw85U9RIVVpTFz1K3tOjm\nz2K34NFte6VcMUjSyF1JEfES8CHgTuAxYEtEPCrpSklXZof9G+ARSQ8B1wGXRUPHc0ctU9E8U9VS\nkeez2G18q9t2s3aFrJUUEduAbW3bbmh6/RfAX+Q9NzXuFrJU5PksHu4yabXbdrN2XkQvJ3cLWSr6\nfRZnu3R9zk5zRpwNxIvomU0Yd33aqNxiMJsw7vq0UTkwmE0gd33aKBwY+vByxmaj8XeofhwYemhf\nznhxBingD7ZZDv4O1ZMHn3uo7XLGZonwd6ie3GLoobbLGZsNYJxdPf4O1dNUBYZBvwB+aLtNunF3\n9fg7VE9T05WUZ+nsds4Ht0k37q4ef4fqaWoCwzBfgPZnLMwun6nHc3TNchp3V4+/Q/U0NV1Jw34B\nnA9uk6yMrh5/h+pnaloM3T7o7uu0adatq+fc3zih56NsK7VrC3z6jXDN8sbvXVuqLtHEmZrA4L5O\nsyN16ur5vd+e5Us7FwYajyvNri3wlQ/DgWeBaPz+yofTCg4TELgUNVyKd35+Pnbs2DHwef/1joe5\n5TvPcjiCJRKXv3k1/339m8ZQQrP66vYwoNnlM9y78R0VlKjJp9+YBYU2y1Y3HhlbtcXAdajp+i2d\nSeaRtZJ2RsR8v+MKaTFIukjSE5J2S9rYYf97Je2S9LCkb0s6rWnfM9n2ByUNfrfP6Y4HFvjSzoWX\n16Q/HMGXdi4MXQu644GFdJva024CamxVSnruwYE9g20v2/ZrW4MCNN5vv7aa8gxp5MAgaQlwPXAx\ncApwuaRT2g57GnhbRLwJ+ATZs5ubnBsRp+eJZMMqMi1vmNTXqVfWzboOXQ2JS3o8btmqwbaXLfXA\nlVMRLYazgN0R8VREvAjcCqxrPiAivh0Rv8je3geU/n+xyFqQp/kPqMyb9YTU2KqU9HjceVc3umaa\nLZ1pbE9B6oErpyICwyzQ3Om3J9vWzQeArze9D+BuSTslbSigPB0VWQtKuqmdojJv1hNSY6tS0nMP\nTr200V+/bDWgxu9E+u+B9ANXTqXOY5B0Lo3AcE7T5nMiYkHS64C7JD0eEfd0OHcDsAFgbm5u4L99\n1YUnt0z9h+FrQZ7mP6Ayb9bLVnUZnKxXja1qSc89OPXSdAJBu8Vybb+28fletqoRFFItbxdFBIYF\nYHXT+1XZthaSTgVuBC6OiJ8tbo+Ihez3Pkm30+iaOiIwRMRmsrGJ+fn5gVOp8jzVKu9aSkUGmalQ\n5s36vKs7Z4XUrMaWGj9TYQApB66ciggM9wNrJZ1EIyBcBryn+QBJc8BtwPsi4vtN248FjoqI57PX\nFwBj6wzuVQsaZDExPzpxQOO+We/a0lpDO+098OTf1brGlhI/U2H6FDKPQdIlwP8ElgA3RcSfSLoS\nICJukHQj8HvAD7NTXoqIeUlvAG7Pth0NfDEi/qTf3xt2HkMvKeRuT3StrP3mXdTNOvG88UmQwncj\neeP6fBcs7zyGQsYYImIbsK1t2w1Nrz8IfLDDeU8Bp7Vvr0LVA8oTXysbV/O618B2gl/MOqr6u5G8\n9srJYtYd1PYzODVLYvRTde62U2Azg853cBbS2FX93Uhe3qy7Gk28dGDIVJ277VoZw813mJC88ZRV\n/d1IXp7KSc0mXjowZKrO3XatjOHmO0xI3njKqv5uJC9P5aRmEy+n5nkMeVSZu+0UWIbrFpqQvPHU\nJT2voWp5su5q1uXpwJAIp8Ay/HyHCcgbtxrLUzmp2cTLqVp22xLn1FObVIl8tktddtusEKmvg2M2\nrJbPNqAlr4wxJDgA7a4kS4u7hZI20ZMwx23xc12DOQ9uMdjoapSfbcPzc0gKUJPsJAcGG03N8rNt\neJ6EWYCaZCc5MIzJ1Dz6syY1IBudJ2EWoCYTMh0YxmCqmtw1qQHZ6DwJswA1mZDpwDAGU9XkrkkN\nyEbnpTEKUJPMO2cljcFUNbn9YJwkjSN7yJMwC1KDzDsHhjGYqkd/prIkRU3Wwy/DOJdw99IY08GB\nYQymbt2jqmtAE7ge/ih6dWX6pm55FDLGIOkiSU9I2i1pY4f9knRdtn+XpDPznltHXo2yZM6MajFV\nXZk2FiO3GCQtAa4H3gnsAe6XtDUivtd02MXA2uznzcBngTfnPLeW3OQukTOjWkxVV6aNRREthrOA\n3RHxVES8CNwKrGs7Zh3whWi4D1guaWXOc816c2ZUC2cP2aiKGGOYBZrXk91Do1XQ75jZnOcCIGkD\nsAFgbm5utBLbZJnizKhe2UfOHrJh1WbwOSI2A5uhsex2xcWxlKSSGVWyftlHDgQ2rCICwwKwuun9\nqmxbnmOW5jjXrL+qM6Mq4OwjG5cixhjuB9ZKOknSMcBlwNa2Y7YC78+yk84GDkTE3pznmlkHzj6y\ncRm5xRARL0n6EHAnsAS4KSIelXRltv8GYBtwCbAbeAH4973OHbVMZtPA2Ud9eNLj0PxoT6uGv7Qj\nax9jgEb2kefMkMyjNI8oU8WfeT/a09LlZzgUwhMpe0ht0mPNPvO1yUqyCdLrS+tWw0CcfdRFapMe\na/aZd4vByjfuL60fNWqpTXpMLVD14cBg5Rvnl7ZmTXYbk9QeiJNaoOrDgcHKN84vbWp9y1aN1B6I\nk1qg6sNjDFa+cc5UrlmT3cYopUmPNZud78Bg1RjXl3bZqqwbqcN2syIMm3aaUqDqw11JVh95BpVr\n1mS3mpmSMSwHBquHvF/I1PqWbbJMyRiWu5KsHgbJA69Rk700Ccy6nQhTMoblwGD1MCVfyLHwM7GH\n1x5QZ14DB39+5HETNoblriSrh5rlgSdlSro/Ctep+/LFf4SjlrYeN4FjWA4MVg/DDiqnMgu6ynJ0\nbW0965nhvXQKqIdfhH/26okfw3JXktXDMHngqXShDFOOIscEuqXw5i1LHRVx/boF1IO/gI89PXoZ\nE+YWg9XHqZfCRx+Ba/Y3fvf7oqfShTJoOYpOiezU2spblmFV2UIq6vpNcfflSIFB0nGS7pL0ZPb7\nNR2OWS3pW5K+J+lRSX/YtO8aSQuSHsx+LhmlPGYtUhmwHrQcRQe0lhTeAcs4jG435q/+59GCRd5g\nU9T1m+I5MaO2GDYC2yNiLbA9e9/uJeCPIuIU4Gzg9yWd0rT/0xFxevazbcTymL0ilRrfzBH1pd7l\nGEdAW2xtdQsORV6TbjfmHTcNX4sfpBVQ1PWb4jkxowaGdcDN2eubgfXtB0TE3oj4bvb6eeAxwAvI\n2/ilUOPbtQX+6fkjty85pns5xhnQyrgmXW/AbU+LHKQWP0grYNDr16slMmj35YQYNTCsiIi92esf\nAyt6HSxpDXAG8J2mzX8gaZekmzp1RZkNLYUa3/Zr4deHjtx+zKu6l2OcN+8yrskgASxvLX6QVsAg\n129KlrgYVN+sJEl3A6/vsOvjzW8iIiR1fYC0pFcBXwI+EhG/zDZ/FvgEjarEJ4BPAf+hy/kbgA0A\nc3Nz/Ypt1lD1LOhemS3djHslznFfk/OuPvJ5y4gjWgyQP4gMsjjiINevZk9WK0vfwBAR53fbJ+k5\nSSsjYq+klcC+LsctpREU/iYibmv6t59rOuZzwFd7lGMzsBlgfn6+awAyS8qwq71WHdBG0enGvPYC\neOiLrTfhQVpBnYJNr/PzXr9UEhQSM+o8hq3AFcCm7PeX2w+QJOCvgMci4s/b9q1s6op6N/DIiOUx\nS8ugN7RJ0enGPHf28K2gcbWivEx7R4oYvvIt6bXAFmAO+CFwaUT8XNKJwI0RcYmkc4B/AB4Gfp2d\n+l8iYpukvwZOp9HGfAb4j02Boqv5+fnYsWPH0OU2K5UXsEtX++RDaATuCc0+krQzIub7HjdKYKiK\nA4OZFWaKAnfewOAlMcyGMUU3k4lX5/GcMXFgMBtUKmswmY2J10oyG1QqazCZjYkDg9mgnOJoE85d\nSWb9TOlTvDry2MpUcGAw66XTeMJRSxtrHR1+8ZXjpmFugsdWpoa7ksx66TSe8OtDjbWO6rbq5qjP\nSPDYytRwi8Gsl0l5ilcRtX2PrUwNtxjMeknlmQ6jKqK2PynXwvpyYDDrJYVnOhShiNr+pFwL68uB\nwaZT3v72FJ7pUIQiavuTci2sL6+VZNNnyhZOA6bzv9mOkHetJLcYbPpMY3aNa/s2AGcl2fSZ1uya\nXovFeeKaNXGLwaaPs2ta+bnH1makwCDpOEl3SXoy+/2aLsc9I+lhSQ9K2jHo+WaFcnZNq2nsWrOe\nRm0xbAS2R8RaYHv2vptzI+L0toGPQc43K4b721vVsWtt1Fnc1tOoYwzrgLdnr28G/h74WInnmw3H\nD2d5Rd2ee+w1m8Zu1BbDiqZnNP8YWNHluADulrRT0oYhzjerzqTXTuvWteaur7Hr22KQdDfw+g67\nPt78JiJCUrdJEedExIKk1wF3SXo8Iu4Z4HyygLIBYG5url+xzYoxDbXTxf+OumQl1bHrq2b6BoaI\nOL/bPknPSVoZEXslrQT2dfk3FrLf+yTdDpwF3APkOj87dzOwGRoT3PqV26wQvWqnqd44h1GnrrW6\ndX3V0KhdSVuBK7LXVwBfbj9A0rGSXr34GrgAeCTv+WaVcu00PXXr+qqhUQPDJuCdkp4Ezs/eI+lE\nSduyY1YA/0fSQ8D/A74WEd/odb5ZMjznIT3OKhs7r5Vk1ovXGBqNZ1QnJe9aSV4Sw6yXug3MpmQa\nBu4nlAODWT91GphNybQM3E8gr5VkZuPhgfvacmAws9F0mwDogfvacmAws+H1WpnVaaW15cBgZsPr\nN47gtNJa8uCzmQ2v3zjCoAP3Tm9NglsMZja8IscR/MCgZDgwmNnwihxH8KqpyXBgMKuDVJf+LnIc\nwemtyfAYg1nqUp9BXNQEQK+amgy3GMxSNy1dLE5vTYYDg1nqunaxPJte19IonN6aDHclmaWuWxcL\n0JK9A/W/iXpdqiS4xWCWR5WDv526WNpNYteSVcYtBrN+qh78bV/6my7PUHH2jhVkpBaDpOMk3SXp\nyez3azocc7KkB5t+finpI9m+ayQtNO27ZJTymI1FCoO/p14KH30Ertmf9cF34OwdK8ioXUkbge0R\nsRbYnr1vERFPRMTpEXE68NvAC8DtTYd8enF/RGxrP9+scqnl1zt7x8Zs1MCwDrg5e30zsL7P8ecB\nP4iIH474d83KU+by0XnGMpy9Y2M26hjDiojYm73+MbCiz/GXAbe0bfsDSe8HdgB/FBG/6HSipA3A\nBoC5ubnhS2w2qPOu7vzc56Jr6IOMZTh7x8aob4tB0t2SHunws675uIgIuo6KgaRjgH8N/G3T5s8C\nbwBOB/YCn+p2fkRsjoj5iJg/4YQT+hXbrDhl1dBTGMswI0eLISLO77ZP0nOSVkbEXkkrgX09/qmL\nge9GxHNN//bLryV9DvhqvmKblayMGnpqYxk2tUYdY9gKXJG9vgL4co9jL6etGykLJoveDTwyYnnM\n6suPwrREjBoYNgHvlPQkcH72HkknSno5w0jSscA7gdvazv8zSQ9L2gWcC3x0xPKY1ZezjSwRIw0+\nR8TPaGQatW//EXBJ0/tfAa/tcNz7Rvn7ZhOlfSKbn2BmFfHMZ7OUONvIEuC1kszMrIUDg5mZtXBg\nMDOzFg4MZmbWwoHBzMxaODCYmVkLBwYzM2uhxtp39SLpJ0DVS3cfD/y04jIMwuUdL5d3vFzeYvzL\niOi7CmktA0MKJO2IiPmqy5GXyzteLu94ubzlcleSmZm1cGAwM7MWDgzD21x1AQbk8o6XyzteLm+J\nPMZgZmYt3GIwM7MWDgw5Sfq3kh6V9GtJXbMNJF0k6QlJuyVtLLOMbeU4TtJdkp7Mfr+my3HPZA9L\nelDSjgrK2fN6qeG6bP8uSWeWXca28vQr79slHciu54OSKnvKjqSbJO2T1PHJiAle237lTebaZuVZ\nLelbkr6X3Rv+sMMxSV3j3CLCPzl+gN8ETgb+HpjvcswS4AfAG4BjgIeAUyoq758BG7PXG4H/0eW4\nZ4DjKypj3+tF44FPXwcEnA18p8LPQJ7yvh34alVlbCvLvwLOBB7psj+Za5uzvMlc26w8K4Ezs9ev\nBr6f8ud3kB+3GHKKiMci4ok+h50F7I6IpyLiReBWYN34S9fROuDm7PXNwPqKytFLnuu1DvhCNNwH\nLG97VniZUvr/21dE3AP8vMchKV3bPOVNSkTsjYjvZq+fBx4DZtsOS+oa5+XAUKxZ4Nmm93s48oNS\nlhURsTd7/WNgRZfjArhb0k5JG8op2svyXK+Urmnesrwl6zb4uqTfKqdoQ0np2uaV5LWVtAY4A/hO\n2646XmM/2rOZpLuB13fY9fGI+HLZ5emnV3mb30RESOqWfnZORCxIeh1wl6THs5qbDee7wFxE/KOk\nS4A7gLUVl2lSJHltJb0K+BLwkYj4ZdXlKYIDQ5OIOH/Ef2IBWN30flW2bSx6lVfSc5JWRsTerOm6\nr8u/sZD93ifpdhrdJWUFhjzXq9Rr2kffsjTfGCJim6TPSDo+IlJcNyela9tXitdW0lIaQeFvIuK2\nDofU6hovcldSse4H1ko6SdIxwGXA1orKshW4Int9BXBEi0fSsZJevfgauADomBEyJnmu11bg/Vl2\nx9nAgaZVg3DWAAAA4UlEQVQusrL1La+k10tS9vosGt+xn5Ve0nxSurZ9pXZts7L8FfBYRPx5l8Nq\ndY1fVvXod11+gHfT6B/8J+A54M5s+4nAtqbjLqGRnfADGl1QVZX3tcB24EngbuC49vLSyK55KPt5\ntIrydrpewJXAldlrAddn+x+mS0ZYQuX9UHYtHwLuA95SYVlvAfYCh7LP7gcSv7b9ypvMtc3Kcw6N\nMbpdwIPZzyUpX+O8P575bGZmLdyVZGZmLRwYzMyshQODmZm1cGAwM7MWDgxmZtbCgcHMzFo4MJiZ\nWQsHBjMza/H/AUTAjc/C5ZbKAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn import datasets\n", + "\n", + "X, y = datasets.make_moons(noise=0.15, random_state=666)\n", + "\n", + "plt.scatter(X[y==0,0], X[y==0,1])\n", + "plt.scatter(X[y==1,0], X[y==1,1])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.pipeline import Pipeline\n", + "from sklearn.svm import SVC\n", + "\n", + "def RBFKernelSVC(gamma):\n", + " return Pipeline([\n", + " (\"std_scaler\", StandardScaler()),\n", + " (\"svc\", SVC(kernel=\"rbf\", gamma=gamma))\n", + " ])" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Pipeline(steps=[('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('svc', SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n", + " decision_function_shape=None, degree=3, gamma=1, kernel='rbf',\n", + " max_iter=-1, probability=False, random_state=None, shrinking=True,\n", + " tol=0.001, verbose=False))])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "svc = RBFKernelSVC(gamma=1)\n", + "svc.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def plot_decision_boundary(model, axis):\n", + " \n", + " x0, x1 = np.meshgrid(\n", + " np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),\n", + " np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),\n", + " )\n", + " X_new = np.c_[x0.ravel(), x1.ravel()]\n", + "\n", + " y_predict = model.predict(X_new)\n", + " zz = y_predict.reshape(x0.shape)\n", + "\n", + " from matplotlib.colors import ListedColormap\n", + " custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])\n", + " \n", + " plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH4FJREFUeJzt3X+MHPWZ5/H34x4HJtyQicMPT2zAyQWsQLi1CXJycbTi\nWBLF3pO8e+JOZI3WQquzWAVChE46dNaxUk7o9u4PJH5kF1l7YY3IJYp8mwRt7GVxyIo9S1mF3+Cw\ndoALwnNOHOAwk2S8eOzn/phq09Pu6q7u/lbVt6o+L8lyT0976uua7nq+P57vU+buiIiILCu7ASIi\nEgcFBBERARQQREQkoYAgIiKAAoKIiCQUEEREBAgUEMzs62Z21MxeTPn+NWZ2zMyeTf7cGeK4IiIS\nzkSgn/OXwP3AQ31e8/fu/q8DHU9ERAILMkJw9yeAt0L8LBERKUeoEUIWnzGz54FZ4D+4+4FeLzKz\n7cB2gHPOOuuTl65cWWATRSQmb05+qOwmVM7r//j0G+5+/ij/tqiA8DRwsbv/ysw2A98FLu31Qnff\nCewEWL9mjf9wx46Cmigisdm1blvZTaicr2w467VR/20hWUbu/o67/yp5vAdYbmbnFXFsERHJppCA\nYGYrzcySxxuS475ZxLFFpLq2Pbur7CY0SpApIzP7JnANcJ6ZHQb+BFgO4O4PANcDf2xmC8A8cIOr\nzKqISFSCBAR3/+KA79/PYlqqiIhESjuVRUQEUEAQEZGEAoKIiAAKCCIiklBAEBERQAFBRCKmncrF\nUkAQERFAAUFERBIKCCIiAiggiEikpre2ym5C4yggiEiU7jlwY9lNaBwFBBERARQQRCRCmi4qhwKC\niIgAxd5TWWpsz9wk9701xc8XWqycOMmtK+bYPDVfdrOkorR+UA6NEGRse+Ym+eovP8CRhQkc48jC\nBF/95QfYMzdZdtOkgjRdVB4FBBnbfW9NcdyXvpWO+zLue2uqpBaJyCgUEGRsP1/o3aNLe16kH00X\nlUcBoeb2zE2y6bULWP/KDJteuyCXaZyVEyeHel5E4qSAUGNFze3fumKOs+3UkufOtlPcumIu6HGk\n/rR+UC4FhBoram5/89Q8d55/jJmJBQxnZmKBO88/piwjGZqmi8qltNMaK3Juf/PUvAKAjGV6awsO\nlN2KZtMIocY0ty9VotFB+RQQakxz+yIyDE0Z1Vh7Ckc7iCV2ulVmHBQQak5z+yKSlaaMRKRUSjWN\nhwKCiIgACggiUjJlF8VDAUFESqPporhoUbnmdJ8CEclKAaHG2rWM2uUr2rWMAAUFiYKmi+KigFBj\n/WoZ1TEgdI6GzrVTmMGxU8s0MoqUSlXERwGhxpp0n4Lu0dAxb4Evfk8jozhpdBAfLSrXWJNqGfUa\nDXUKVeW1iPtLiJQlSEAws6+b2VEzezHl+2Zm95rZy2b2vJldFeK40l/IWkaxXwizjHrGHRnp3tHh\nKLsoTqGmjP4SuB94KOX7m4BLkz+fAv48+VtyFKqWURUWp1dOnOTIQv+38ygjo851CQNOYUu+X+c1\nmTxpuihOQQKCuz9hZmv6vGQL8JC7O/AjM5s2sxl3PxLi+JIuRC2jtMXp/3R0mvvemopiwfbWFXNL\ngla3UUZG3YHQU15XxzUZaaaiFpVXAa93fH04ee6MgGBm24HtAKtXrCikcU2WZZ9C+gXPohktdI+G\nQmQZDVqXaKvjmkyeVNk0XtFlGbn7TmAnwPo1a9I6ZRJA1qmgQdMxsUybhK7smq3n73x28niwYw6i\njYaSp6KyjGaBizq+Xp08JyXKes/lXovT3eo4bZKt52/87/mzc28LaFFb8ldUQHgE+MMk2+jTwDGt\nH5Qv6z6FzVPz3Hn+MWYmFkibSXeIMvtoHFkCIRQXDLMGcJFRBZkyMrNvAtcA55nZYeBPgOUA7v4A\nsAfYDLwM/Aa4KcRxZTxpU0G9esbt6Zjuaab3xLOeEEr3ukSvLCMobg2hDhsNtTs5bqGyjL444PsO\nfCnEsSScXpk5g7JxOi+SRxZaUPM0zM51iV7BsMh7VA8TwEVGoZ3KDdY5FWQ4MxML3Hn+sYEX881T\n8+y95GiPvvKiKvVYhzHq+Qol5EZDkV6iyzKSYo2TmdPEHmuZ96gOtdGwLNNbW9qQFjkFBBnZKFNO\n42hKymW//2eZAUnqTwFBRlZkj3Wc8hlVCiRVKBMi9aWAIGMpqsc66r0dYrzA9gtQTbuHhcRFi8oy\nkqKrn46achlb7v6gzWV1SC1No/WD+Ckg1FDeF+sydsx+YFnvDWJpz7fFdoEdFKCadA8LiY8CQmTG\nvZgXcbEuo9ftKVWt0p5vi+0COyhAKbVUyqSAEJEQF/MiLtZl9LrfSak6mvZ8W2wX2EEBquy9DtJs\nWlSOSIgFxbSL8pGFFpteuyBIpk0Z+w9GPWZsuftZUnWVWiplUUCISIied79S1e3nx820KXr/wbjH\nzHqBLSI9NbYAJdJJAaFg/S46IXreve8c5oSsOVTGRS3vYxaZnqoRgMRKAaFAgy46IXrevS6cR3KY\n8y/jopbnMZX/L6KAUKhBF51QveDuC+em1y5oXM2hYcWWnipSBgWEAmW56OTRCy5jzr9qmlioT6Sb\n0k4LVFZOvFIZBxslPbXo3doiedMIoUBl9tS1kNnfsNN1MdZIEhmXAkJOBhUwU8phfIYJmlqEljpS\nQMjBoN6jLhhhLf/1U5w9t5dlJ9/mVGua41ObOHHOJ3M9phahpY60hpCD2Cps1tnyXz/F+4/tpnXy\nbQxonXyb9x/bzfJfP5XrcWOrkSQSggJCDtR7LM7Zc3sxP7HkOfMTnD23N9fjxlYjSSQETRnlQCmM\nxVl28u2hng9F60FSRwoIOVDef3FOtaZp9bj4n2pN535srQcN57YrHo7+JjmXze5m48G7mJqfZW5y\nFfvX7uDQquvLblZhNGWUgzLz/puWG398ahNuy5c857ac41ObSmqRVNVls7u57oXbOXf+MIZz7vxh\nrnvhdi6b3V120wqjEUJOyug9NjE3/sQ5n+Q3UHiWkdTPxoN3sfzk0s/J8pPzbDx4V7BRQuwjEAWE\nGmlqbvyJcz6pACBjm5qfHer5YbVHIO2g0x6BANEEBU0Z1YiymyRmb38j7qSKuclVQz0/rH4jkFho\nhFAjVclu2rVuW+bXbnt2V44tKUYRN96pipgXlvev3bGkBw9wojXJ/rU7gvz8vEcgISgg1Ehs2U3D\nXPiH+Rm3XfFw9L3Ntiau61RVe9omrzn+uclVnDt/uOfzsVBAqJEyc+Ont7YK6/ndc+BGWLf0uVhH\nEk1d16mqQ6uuz20+P+8RSAgKCDkoc4qgqOym6a2L6xKng8CB3A/ZV3skcdsVDwPxzFdrXWept79x\n8oxg3hR5j0BCUEAIrO5TBGcEgoyKSrc73a51cUwtVWVdR4qR5wgkBHP3stuQav2aNf7DHfEMp7JI\nu13lzMQCey85WkKLwhl1Wqg73Q5gwd7HuxPnMHni7dx7SmUGhu4OAiyu6/TbqNhvhFmXBeoQ60vS\n21c2nPWUu189yr/VCCGwtKmAIwst1r8yU8kP8ekP74jTQr3S7Sb8XSZOvAvkn4/dXnMoIzCEvPEO\nULnRZxmlyWV0QQKCmX0BuAdoAX/h7n/a9f1rgO8B/yd56q/c/ashjh2btCkCMJxqfIjbQvXisqTV\nhd4R2ktZgSHUjXfaj3t9L8b3Urs0ebsabbs0+W8A0AghRmNvTDOzFvA1YBNwOfBFM7u8x0v/3t3X\nJX9qGQygd1nkblW4N0LIIX3WtLqi8rHvOXAju9ZtO70eEpN+I8wjFVugLqs0uYwuxE7lDcDL7v6q\nu78LfAvYEuDnRqtfAbnuwnbQe40m1g/x9NZW8Pnd/Wt3cKI1uMhe0fnYMW6QSl9stuRP7+/EWMyw\nX2nyWNOEmy5EQFgFvN7x9eHkuW6fMbPnzWyvmV2R9sPMbLuZPWlmT74xF1+56PYc75GFCRw7PQXU\nHRT2XnKUZ/75EWYqdGetvPYSHFp1PfuuvJt3JlfjGPPLV7DQVaG0rHzs2BY3s4wwl3JOYanvxTKl\nlSAvojS5jKaoWkZPAxe7+78A7gO+m/ZCd9/p7le7+9XnTcU3rTLs7TGrcmetvDeWHVp1PQ9e+wz3\n/u5Rdn7+II/91r2nA8Q7k6vZd+XdpaXjxTR91DnCTBtdgmM4y3C6Rw0xTUeqNHn1hFhUngUu6vh6\ndfLcae7+TsfjPWb2Z2Z2nru/EeD4hRp2o1EV7qxV5C7jttjysdsLzjFMZbQXodNTmE+y95KjrHtl\npue/T1trKNqg0uTbnt0V3Qit6UIEhB8Dl5rZR1gMBDcAf9D5AjNbCfzC3d3MNrA4MnkzwLELN8pG\no5jvrFVGMIjZrnXboggKMLg21TKg1+RSTCWMVZq8WsZ+77j7AnAL8CjwEvBtdz9gZjeb2c3Jy64H\nXjSz54B7gRs85h1xfVRlCigLBYO4DbrzXtpKwzArEGVrlxqROATZh+Due4A9Xc890PH4fuD+EMcq\nWxWmgGQ8MY0S+o0uZ1JGq2mJDCKDxDS6rIzOLKK9lxytZDDQ6KC/Ksxt12m0KnFQQGgoBYPBYg8K\ng6aUqqDs4oOylAJCA8WSYlkFsZ+rGEar/TZqZqF1hHgoIGQ07ps+JhodZKdz1V+WjZpSHQoIGdTp\nTR97jzdGsU8dlWnYjZoSNwWEDOr0plePt7nyGOWGuCOc1hHi0diAMMyHoy63QVRPd3RVP3d5jXLT\nNmTGWKtLBmtkQBj2w6E3vVRdXqNcpb7WSyMDQl0L1Em+qjxKyGuUW4fUV3lPI2+hWccCdYNMb22N\nfAtMqb60GlzteymM856OuVaXDKeRAaFuBeqkODGVtRhGr0J57XspQDy3dr1sdjcbD97F1Pwsc5Or\n2L92RxRVcWNtV2iNnDK6dcUcE10lwCbQFJBkU8XU3e6pnRjvpXDZ7G6ue+F2zp0/jOGcO3+Y6164\nnctmd5fWppjblYdGBgQA6/owdH+dVZ02rFXdZbO7uenx9Xz5+xdw0+Pra/mBHUfnrua0UsNlZs5t\nPHgXy08uHZ0sPznPxoN3ldSiRbG2Kw+NDAj3vTXFia4AcAIbundUlQ1rZRayK+oiXWQv7p4DN1Zy\nlNApxsy5qfnZoZ4vSqztykMjA0KojIs6bVjLQ5EX6Sb14kKIMXNubrLXrdjTny9KrO3KQyMDQqje\nUV02rOWlyIt00b24qu/4jjFddP/aHZxoLR1dn2hNsn/tjpJatCjWduWhkVlGg25NCIvTQYPSTEfJ\nVmqSIi/Sc5OrOHf+cM/n8zK9tVXpsguxZc61s3Ziy+aJtV15aGRAGLSvoL020A4YaSl5WQJLkxV5\nkd6/dgfXvXD7khFJ3r24ew7cyG1bH650UOiUpROUt0Orro/yQhtru0Jr5JQR9K8jn3VtII9hd52y\nlvIcancvVgPsu/Ju3plcjWO8M7mafVfenfuHuOpTR21lJkjEukDfxKy1Ro4QBhlmbSDksDvryKQq\n8hpqtxer26OB9mL1vivv5sFrnxm73cOq6ma1Tv06QVV8740r7T0G1HqkoIDQQ1lrA3X8UGYdag+z\nE7TfYnWdP6x5KitBItZ7e2d9j9VtB3Njp4z6KSslr6lZS8Omp8aYFx7rtEdWMe5LKFOW91gddzAr\nIPRQVkpeUz+Uw6anxpgXHmMvdxhldYJiPW9Z3mN13PuigJCijJuXx7hZqAjD9vhjzQuvcnnsMjpB\nMY+qsrzHYhypjktrCBGpQ5ntUQybnhpzXniVF5iL3pcQ6+gAsr3Hytj7kjcFhMjEtlmoCKPsIWhK\nXnhdVWE0Neg9Vsbel7xpykhKd2jV9aXsIchLFS52/eS9F6bq56dt6fsWTlmLiWQNoaoLyxohyFhC\npd3Vrcdf1amjvPfC1O3Ofe33bF32LGiEICOrY9pdSFXsCedZwTfWPQfjqlO2kQJCzupUiqJbnT4I\nealaUMhrL0xdgwHUK9tIASFHVbmBzqjq9EHI065126JOseyUx16YOgcDiHNfzKgUEHJU9xvo1OmD\nkLe87rIWegQaci/M9NZW7YMBxLsvZhQKCDmqeymKOn0QihA6KOQxAg21Qa0dCOoeDKBeWXLKMspR\n3W+gE8MGsaoVF7vnwI2wDm67Yvz7KORVDHHcvTC71m2rVSZRFnXJklNAyFETbqBT5gehyiWK24Fh\nnNTU2EagVVtAlzMFmTIysy+Y2UEze9nM7ujxfTOze5PvP29mV4U4buxivG9tndQhy2nXum0jLzrH\nUAxxemvr9P9Bqm/sEYKZtYCvAZ8DDgM/NrNH3P0nHS/bBFya/PkU8OfJ37XXxFIURalTllPnVBKQ\naTqpzBHo6cXihk0N1V2IKaMNwMvu/iqAmX0L2AJ0BoQtwEPu7sCPzGzazGbc/UiA40tD1bG4WHsR\n9ratSwNDv/sdF1EMsXMEo0BQXyECwirg9Y6vD3Nm77/Xa1YBZwQEM9sObAdYvWJFgOZJXdWxuFjb\n6eycdXDJqd38l7+eYn6hdzmJvEagZwQBqb3oFpXdfSewE2D9mjVecnMkYjFkORXhP//NhcyfOL7k\nueO+jP86N8PmqVeDHKPnGoBGAY0TIiDMAhd1fL06eW7Y14gMrS7pfv3MzR9PfV6LuRJSiIDwY+BS\nM/sIixf5G4A/6HrNI8AtyfrCp4BjWj9opqrtG4jB1OTZPYPC1OTZJbQmDnof5WPsgODuC2Z2C/Ao\n0AK+7u4HzOzm5PsPAHuAzcDLwG+Am8Y9rlRPlfcNlGnjJz7Gvqd/wsLJ90pKTLSWsfETHyuxVeWJ\n5X1Ux6AUZA3B3feweNHvfO6BjscOfCnEsaS6+u0bqPoHKU8fv3gGgP0vvszc/HGmJs9m4yc+dvr5\nponhfRRLUAotukVlCS+WDJE89w3UsbfW6eMXzzQ2AHSLYf9JDEEpDypuJ4XJqzqqbtTTLDFU2Y0h\nKOVBAUEKk1d11DqUsJDsYqiyG0NQyoMCghQmrzLBde2tSW8xlJuOISjlQWsIUqg89g3UsYSF9JfH\n+2iYdai6bopUQJCoZfmQ1rmEhRRjlKyhOm6K1JSRRCvrYnEMUwhSbVqHWqQRgkRrmNS+OvbWRlH3\n9NtQus/TVI8pR2jeOpQCQs1VudaNFouHU9fNUqH1Ok+OAWfW0mzaOpSmjCRadU3ty0vaiOoLz/4x\nNz2+XvsyEr3Ok+FJUHhPE9ehNEKQaI26WFz2tElZx08bORn1Gi2Me37TR5jOO5OrGz3dpoAg0Rol\nta/saZNRjh8qgKSl37aFLq1QRuAL8ftNT1NezYPXPhOusRWkKSOJ2qFV1/Pgtc9w7+8e5cFrnxn4\noS87W2TY44csu9Frs1S3UOsvvdr9uedu49//7WV8+fsXDD1Fddnsbm56fP3Afxvi91vXTWUhKCDU\nWJUXlEdV9kL0sNkqIQPY0vTb3kKtv/Rq94S/y/tP/L+hA9swQTHE71dpyuk0ZSS1Uuau5cUL2HDZ\nKqEDWDv9tntqBcL2grO0L+sU1TDpxcP8fvtNaSlNuTeNEGqq8wbpTVLmdMDGg3dhPYKBY6nHzyuT\nKu9ecNb2ZQkcwwTFrL9fVcAdjUYINRXLPRCKVmaNmX7ZK2nHz7PsRp694F7t7iVL4Bim15/191vX\n+xXkTQFBaqes6YB+2Stpqlokrbvdx5d/kOULc0z4idOvyRrYhg2KWX6/Za8lVZUCQg1Nb23BgbJb\n0Tyj9varOp/d3e5R01DzCIqqgDsaBQSRQKra2w9lnMAWOiiqAu5oFBBqqKnrB3nK2vutam+/bpoe\nnEelgFAzmi4Kr+zdzzIaBefhKe20ZjQ6CK/s3c8iRdEIQaRL02vll10cUMqjgFAjTSxVEVrTa+Vr\neqzZNGUk0qHqtfKzFolLo+mxZlNAqAmNDsIYVCs/5mJoIco1aENXs2nKqAaUWRROlWvlhyjXoA1d\nzaYRQg0osyicKtfKD9G7r/L/X8anEULFaXSQXZbsmSpvaArRu6/y/1/Gp4BQYdNbWxodZDRM9kxV\nNzSFKtdQ1f+/jE9TRtIITcie0Z3AZFwaIVSURgfDaUr2TL/evTacySAaIVSUgsFw8rozWVXoDmKS\nxVgBwcxWmNljZvbT5O8PprzuZ2b2gpk9a2ZPjnNMae7tMcfR9OyZKk2Zjbu5TkY37gjhDuAH7n4p\n8IPk6zT/yt3XufvVYx6z0TRVNJqmz69XZcpMI5lyjbuGsAW4Jnm8C/g74D+O+TMlhYLBeLJmz9Rx\nrr0qG850L+RyjTtCuNDdjySPfw5cmPI6B/aZ2VNmtr3fDzSz7Wb2pJk9+cbc3JjNqw8Fg2LUtYda\nlSmzqoxk6mpgQDCzfWb2Yo8/Wzpf5+5Or5KQiz7r7uuATcCXzOy3047n7jvd/Wp3v/q8qalh/i8i\nY6vSXPswqjJl1vTF/7INnDJy9+vSvmdmvzCzGXc/YmYzwNGUnzGb/H3UzL4DbACeGLHNjaPRQXHq\n3EOtwoYz3Qu5XONOGT0CtMtsbgO+1/0CMzvHzKbaj4HPAy+OedzGUDAolnqo5arKSKauxl1U/lPg\n22b2R8BrwL8DMLMPA3/h7ptZXFf4jpm1j/c/3f1vxjxuIygYFE891OHksQBfhZFMXY0VENz9TeB3\nejz/f4HNyeNXgd8a5zhNpGBQDhV3y053V6sfla6IkIJBudRDzUYpovWjgBCZXeu2qZy1VEKdF+Cb\nSgEhIroNpsSq11pBVTa7SXYqbhcJBQOJVdpmvVfP/1wlNrtJdgoIJZve2lIwkKilrRV89JePDZUi\nqqJ18dOUUYm0XiBV0G+tYJj6UMpIip9GCCXRqEB6ibEXHWKzXl1LgtSNAkLBNEUkaWItrBeiMJ4y\nkqpBAaFA2l8g/cTaiw5RTkIlQapBawgFOB0ItF4gfaT3og/z5e9fUOqu6XE366kkSDUoIORIgUCG\nkZbXbwAdU0hQvYVYlQSpBgWEHCgQVF8Zd03r1YvuVuXSECoJEj8FhIAUCOqhrBTJ7l40eDI6WEoL\nsZIXBYQApre2ALRgXBNlFm3r7EXf9Ph6lYaQQikgjOF0+qhGBLUSS4qkFmKlaAoII9A+gnorqmjb\noHUKLcRK0RQQMlIQaI4ieuZZ1ym0ECtFUkDo0l4PAK0JNFURPXPdXEZiFHVAaK1YeoEGePsbJ4P8\n7O6fCyhDSE7Lu2ceyzqFSKeoA8LR+Q+d2UtfB7dd8fBYP1cXfimbbi4jMYo6IKTRVI5UnTKIJEaV\nDAgiVacMIomRAoJISZRBJLFR+WsREQEUEEREJKGAICIigAKCiIgkFBBERARQQBARkYQCgoiIAAoI\nIiKSUEAQERFAAUFERBIKCCIiAiggiIhIYqyAYGb/1swOmNkpM7u6z+u+YGYHzexlM7tjnGOKiEg+\nxh0hvAj8G+CJtBeYWQv4GrAJuBz4opldPuZxRUQksLHKX7v7SwBm1u9lG4CX3f3V5LXfArYAPxnn\n2CIiElYR90NYBbze8fVh4FNpLzaz7cD25Mt/+sqGs17MsW0hnAe8UXYjMlA7w1I7w1I7w1k76j8c\nGBDMbB+wsse3drj790Y9cBp33wnsTI79pLunrk3EoAptBLUzNLUzLLUzHDN7ctR/OzAguPt1o/7w\nxCxwUcfXq5PnREQkIkWknf4YuNTMPmJm7wNuAB4p4LgiIjKEcdNOf9/MDgP/Evi+mT2aPP9hM9sD\n4O4LwC3Ao8BLwLfd/UDGQ+wcp30FqUIbQe0MTe0MS+0MZ+Q2mruHbIiIiFSUdiqLiAiggCAiIolo\nAsIQZTB+ZmYvmNmz46RXjaoq5TrMbIWZPWZmP03+/mDK60o5n4POjy26N/n+82Z2VVFtG7Kd15jZ\nseT8PWtmd5bQxq+b2VEz67lnJ6JzOaidMZzLi8zsh2b2k+RzfluP15R+PjO2c/jz6e5R/AE+zuKG\nir8Dru7zup8B58XcTqAFvAJ8FHgf8BxwecHt/O/AHcnjO4D/Fsv5zHJ+gM3AXsCATwP/UMLvOks7\nrwH+uoz3Ykcbfhu4Cngx5fuln8uM7YzhXM4AVyWPp4BDkb43s7Rz6PMZzQjB3V9y94Nlt2OQjO08\nXa7D3d8F2uU6irQF2JU83gX8XsHH7yfL+dkCPOSLfgRMm9lMhO0snbs/AbzV5yUxnMss7Sydux9x\n96eTx3MsZkau6npZ6eczYzuHFk1AGIID+8zsqaTMRYx6lesY+5c1pAvd/Ujy+OfAhSmvK+N8Zjk/\nMZzDrG34TDJ1sNfMriimaUOJ4VxmFc25NLM1wHrgH7q+FdX57NNOGPJ8FlHL6LRAZTA+6+6zZnYB\n8JiZ/WPS8wim6HIdo+rXzs4v3N3NLC2/OPfzWXNPAxe7+6/MbDPwXeDSkttUVdGcSzP7Z8D/Ar7i\n7u+U0YYsBrRz6PNZaEDw8ctg4O6zyd9Hzew7LA7rg17AArSzkHId/dppZr8wsxl3P5IMZ4+m/Izc\nz2cPWc5PDCVPBrah80Po7nvM7M/M7Dx3j6kAWgzncqBYzqWZLWfxIvsNd/+rHi+J4nwOauco57NS\nU0Zmdo6ZTbUfA59n8Z4MsYmhXMcjwLbk8TbgjJFNieczy/l5BPjDJKPj08Cxjimwogxsp5mtNFus\n/25mG1j8TL1ZcDsHieFcDhTDuUyO/z+Al9z97pSXlX4+s7RzpPNZ9Op4n1Xz32dxLu6fgF8AjybP\nfxjYkzz+KIuZHs8BB1icwomunf5eJsIhFrNUymjnh4AfAD8F9gErYjqfvc4PcDNwc/LYWLyx0ivA\nC/TJPCu5nbck5+454EfAZ0po4zeBI8CJ5L35R5Gey0HtjOFcfpbFdbXngWeTP5tjO58Z2zn0+VTp\nChERASo2ZSQiIvlRQBAREUABQUREEgoIIiICKCCIiEhCAUFERAAFBBERSfx/4ngk8NQQRboAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_decision_boundary(svc, axis=[-1.5, 2.5, -1.0, 1.5])\n", + "plt.scatter(X[y==0,0], X[y==0,1])\n", + "plt.scatter(X[y==1,0], X[y==1,1])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Pipeline(steps=[('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('svc', SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n", + " decision_function_shape=None, degree=3, gamma=100, kernel='rbf',\n", + " max_iter=-1, probability=False, random_state=None, shrinking=True,\n", + " tol=0.001, verbose=False))])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "svc_gamma100 = RBFKernelSVC(gamma=100)\n", + "svc_gamma100.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+MXtV5J/Dvw4whs2Rg4nUMjo3ZpAIELu04WG6aRBVL\nSQROJW9XbEXWVqZWJStRA0ZJpUVLRaVIkdr9A8nQtJHVQgfZTVSxTYqKvQjHm6VFSRUDk8AkhQAK\nwrMTJoSObdRJ8QxP/3jvHe68vj/Ouefce8+99/uRLM+8887cM3fe9z7nx3OeK6oKIiKiC5puABER\nhYEBgYiIADAgEBFRhAGBiIgAMCAQEVGEAYGIiAB4Cggi8qCILIjI8xlfv1FETovITPTvXh/HJSIi\nf0Y9/Zy/AvCnAB7Oec4/qOpveToeERF55mWEoKpPAnjTx88iIqJm+BohmPioiPwAwByAP1DV2bQn\nich+APsB4MKxi2+47MpramwiEVG7vfbPz7yhqu8v8711BYRnAGxV1bdEZBeAbwK4Ku2JqnoIwCEA\n2HrtDfrFh79TUxOJiNrvrp0XvVr2e2vJMlLVM6r6VvTxUQDrRGRDHccmIiIztQQEEblcRCT6eGd0\n3J/XcWwiIjLjZcpIRL4G4EYAG0TkFIA/ArAOAFT1qwBuA/A5EVkGsATgdmWZVSKioHgJCKr66YKv\n/ykGaalERBQo7lQmIiIADAhERBRhQCAiIgAMCEREFGFAICIiAAwIREQUYUAgIiIADAhERBRhQCAi\nIgAMCEREFKnzfgjUQQe2HcbikZXMr09PTtXYGiJywYBA1qZmplc/Xpwxe+7EnhEcnN1bZbOIyBED\nAhlLBgJbi0dWMIVpjhiIAsaA0GEHth3O/JpNb71oWshGHFQYGIjCw4DQMckgkHcRP7Dn3ecVBQeT\nYHD07BgeeHMcP10eweWjK7hj/VnsGl/KfP7UDEcLRKFhQOiIuBdfNKcfS17kpzCdOcdvMk109OwY\nvvSzS/ELHSStzS+P4ks/uxQAcoPCgW2Hua5AFBAGhJazDQRZ4jn+Mh54c3w1GMR+oRfggTfHcwPC\n4pEVYLLUIYmoAtyH0GI+5/Zd/HR5xOpxIgoTA0KLmc7t3/rqRmx/eRNufXUjjp4d896Oy0fT25H1\nOBGFiQGhpfIyiGLx3P788igUsjq37zso3LH+LN4j76x57D3yDu5Yfzb3+yb2cARBFBIGhJYyGR3k\nze37tGt8Cfe+/zQ2jS5DoNg0uox73386d/0AsEt9JaLqcVG5w+qc2981vlQYAJKYckoUHgaElprY\nM1I4Srh8dAXzy+f/iU3m9tPSUF12KscYCIjCxSmjljKZbnGZ20/7+dOTU6v/bE3sGWEwIAocRwgt\nVjRKiKdwbHYQm0pe3LNGDmsCwKzzIYmoYqKqTbch09Zrb9AvPvydppsRNN97EViVlKjd7tp50dOq\nuqPM93LKiFYxGBD1G6eMqDOK9mYw2BHlY0BouRBKVzQpDgIm9ZziCq8MDETpGBBazEcaaNLikRUc\n2NOOCqRlivrFwTOu7gowOBAlMSB0nO19CkyqnjadPjo1M+2luiuAUndxY9lu6ipmGbVUmfsUAIN9\nCCZlJWzUFSB8j4iS0hbUbTO4uChPIXDJMuIIocPK3qfAVvJC3eToITkaukTegQhw+p0LSo+MbEch\nvG80tR3TTlvIpNIp0Mx9CqZmpo3bZ6PoZw5Xdj2tI1h8Z6TSKq9ZpmamKx3NEFWFI4QWOji71+ju\nZi61jFxUsThdNHWTNhpK8jUyslmT8X3f6LygyKkq8sFLQBCRBwH8FoAFVf3llK8LgIMAdgH4VwC/\nq6rP+Dh2X5kUt7tj/dnUNYSiWkZpyixO15mxZDLqcR0Zlbl3tGtQSAaBvL83M6fIB19TRn8F4Jac\nr98K4Kro334Af+7puL1l8qYve5+CYWVvtLN4ZMXb9FHRzXRMRj1lRkbJO8794cJELfeXAAaBYGpm\nepBaG/0rEj+vqmk76j4vAUFVnwTwZs5TdgN4WAe+C2BCRDb5OHafTU9OFV4od40v4diVC3j2l+Zx\n7MqFUlMmWYvT/3NhovC2nPEFylVRAEyr7JpUZmQ0HAjfgaQ+r2jkYfv7x4HAha/zTv1S16LyZgCv\nJT4/FT12HhHZLyInReTkW4tv1NK4Njs4u9fpVpQm91zOvuCZjxaqvjgNj4YulRVMXLDiNDIqWpeI\n+VqTiUcFPjEokI3gsoxU9ZCq7lDVHe+d2NB0c1qh7Jyx6VRQ0QXPdNrE9eJUNBefHA39vw+9jm9/\n8HWnkZHZmoPi42O/sP7Zw0z3PJgE8GEMCmSqroAwB+CKxOdbosfIkzI3rjG953LRdAxgvmBbdVDw\nyaznL/jHpfc4HccmGJRZyyEyVVdAeBTAZ2TgIwBOq+p8TcfuFZsLpuk+heR0DJC+s10B4x6rizoX\nS00CIeCWvWSzG9o0gKfhKIFM+Eo7/RqAGwFsEJFTAP4IwDoAUNWvAjiKQcrpSxikne7zcVxKZ5KS\nCtjtU9g1voRd40up5TAGxCgNEyhXCyhZ1bQuw3ecEyB1YdlkJJEVyGx+nyY2GlK/eAkIqvrpgq8r\ngN/3cSzyp8w+heRFcn55BBi6QJpsADPdo5Ds1boWsysrDoRAdm0ok+wlH4HMZaMhy2mQCe5U7rGy\n91yOL5LbX96UOoFU1xRK3aq8R7UJnxsNidIwIHSM7QU12QO25bs0RsjBIOZyvnwcG7APSBwdkCkG\nhADFF0abcsrx9EqdUys+e6wm9ziwLZ/RVnm/p21AYjAgGwwIDcrqEccXRpOb1TTJ1xRKmXs7mC5g\nx9/rI5BkbQD0Oapx+T2TeG8GKoMBoQFNZMxUpcwUSnyx8pVymXd8XxdYIGcD4KRdWmdegPJxDwsG\nAyqLAaFGZe4DHCqXXneZi1XZlMu6bhJkqihAuaSWstopuQqudEUXxTdMqWtEUKa8ge3P97Fj1ubC\ndekF6RvEsh6P+czd97EprmhzWdaCfNFCfTwqYDAgFwwIFSpTrMz1Yl5HeQOXHbNlZd36u+iW4GUv\nsGl8lJYuClBpu6OZWkp14ZRRBcpODfmY765jisSl1z2c9WK6q/pMRtXRrMdjVeTuuyz2F6Xqllmo\nn56cAmZLNYdoDY4QPHPJpffR8866KM8vj3ibRvLZ6zad4ih7TF83CfLFZARgcw8LppWSTxwheOS6\nscrHfHdWDxTA6uMumTZA+V531sVrenKqcGrNpadvmglVxz4HH6m6zCKiqjAgeGJTwjjrYuBj52/a\nhXNQi9S+5lCWKko4FAWFqstG+ExPLVI2VReIRlScHqKKMCB4YFvPPuui42O+O+3COV9Blcwqdsya\nBIWqpnpCS08F1m6E44iA6sCA4IGvzVW+esHDF85bX93oteaQDds57uTzi6aRTKZOTIN1CKWlz/t9\nOBKgmjEgOLJJKzW56FTRC26iSqaPxc7Cn2FwwTw4u9doJ7HvQn0mzvv9GACoYQwIDmz3GDRx0QH8\nV8lM+71Dz3Ypmo4qEzRdFqFDP1/UTwwIJZW5JaFrTz1tTtl0SsR05GEyDdPWi1nc7rS/nW3QdFmE\nntgzwtEABYkBoQTT6px5BcxsepWrF+mUi8jB2b3OFVH7tniZNVqwma4LcRGayBUDgqUD2w4b1e3P\n6z3aVK0Eqr1IdyGn/eq5R/CxF76M8aU5nB3bjKeuuQcvbr4t93umJ6ec9o2EsAhN5BsDgiWTC0hd\nJYxdN8J1JRjc/NwXsG5lcF4vWTqFm5/7AgAUBoV4wbnMeWxqPYioSixdYcG0qJlr77HoQl139dSQ\nfeyFL68Gg9i6lSV87IUvG/+Mg7N7MT05lXkDnDQsQkddxIBg4eDsXqOLhkutH5NgQO8aX5qzejxP\nHBhMFs1daiQxkFOoGBAq4NJ7zAsGPurxJy0eWfH+M+t2dmyz1eOmTIOCaRG6YQzsYbp67hHsO7Ed\ndz62EftObMfVc4803aRaMSBYMhkllO095l2EbMpj2FQ1bXtv9alr7sG5kbW/47mRMTx1zT3OPzse\nLdhMJdmIp/4YHMIQr0ddsnQKAl1dj+pTUBAtusNIg7Zee4N+8eHvNN2MVK4LusOKeqRlbkQPDEYm\nRcGo7YvLZbKMbNVxH2zeArNZ+05sxyVLp857/MzYFjx007NejlHHa/WunRc9rao7ynwvs4xKOji7\nFwf2+AkKvjZ6lc1uWjyyAkx6aUIjXtx8m/c31bDVi3TJrCQT8c88sOcwg0IDfK5HpXHJiKsLp4wc\n+HjT+tz1y9z4epgmF5TVhbWdNqpqPSrmIyOuahwhNMh3CYOyufFtLUXRJJsd4mVqHpncppN/N7+e\nuuaeNT14wN96FFD9CMQHjhAcuC4G2vQETXqkzI0PT7yuM788CoWs7lp3uYVpLLkozYVpdy9uvg3H\nr78PZ8a2QCE4M7YFx6+/z9t0TtUjEB+4qFyC7zef6aKuydy1bW+UvczyTF4HWfei2DS6jGNXLlTR\nLP5NAzW8hgAMRiA+gw7gtqjMEYIl02wf29RPk59rmvJqkhs/sWeEF44aNLGuwxFDmKoegfjAEYIB\nm5TDsqmfMZOLtEsKZFOpjXWk29XNZMTWxAghqe0pxWTPZYTAgFDANsXQxwXApuduEhyaLm+dNlRe\nlgvx9ujFGDu32OoAUfT6KNNByJv2K7NAzaDQLwwIFSiba7795U1QSMpXBo+avIm79gbO2vCTVMVc\nal1MgkLZG+8A7wYQAKVHn01ND3ZxZBi6xtcQROQWEXlBRF4SkbtTvn6jiJwWkZno370+jlsVl0qi\n2SmeYpxl0vZyEsNM0upCy8e2UbS2Y1PzKG9zYd7XijSxpsBSEO3jHBBEZATAVwDcCuA6AJ8WketS\nnvoPqjoZ/fuS63Gr4vrGSUv9HGb6Ju4K07S6kPKxbcWVUl1lLTbPL49g3nGBuu7Nbm3YiEVr+Rgh\n7ATwkqq+oqpvA/g6gN0efm7tTINBXhbRcGE7IH1Krk+7h9MK0KUJKR+7rLggXtngkDfCROpU5OBR\nk4y2undAt2EjFq3lIyBsBvBa4vNT0WPDPioiPxCRYyKyLeuHich+ETkpIiffWnzDQ/P8MtlolJwi\n2FTi3ghVlkVownC63dK69ViWdWue43NHaCiS1VJN/6YmI8y1FO8EOh3Zho1YtFZd+xCeAbBVVX8F\nwAMAvpn1RFU9pKo7VHXHeyc21NQ88+G07Txumd3DXVpQjr24+TY8dNOzuP9TCzj0yRfwxK/eH3Q+\ntk8HZ/ca1z9KjjCzRpeDBAXFBVAMjxpMpiPrWk+osjQ5VcNHLaM5AFckPt8SPbZKVc8kPj4qIn8m\nIhtUNbwhQAHbjUbxAqJJlknXsovy1FGhNDSmFXJ3jS9h1/hSTgrzCo5duYDJlzelfn/WWkPd4r8v\ns4zaw0dA+B6Aq0TkgxgEgtsB/PfkE0TkcgCvq6qKyE4MRiY/93Ds2pUpIBe/wfP0KRj02cHZvcCk\nWS/9jvVnU9NM49HlBQDSJpdCKj/Qx8DfZs4BQVWXReTzAB4HMALgQVWdFZHPRl//KoDbAHxORJYB\nLAG4XUPeAJGj6E1qa3Xx0WPVUwpf/HfPCwxFo8uslQabFYiy4nazI9Mt3JgWsZlXLbNbNIk1hGhY\nmXl9113xtq9DmzbyNd4c3jHN0YFth7E4Y/58kymgYexJUZ7pySnr3fG+R6tZygSr5PcwOLRHr0cI\nVd0KcRjfEGTDtpiiy2gVyH99+s5I4nuheqxlZKCOm6Rn4ZuAyqqr0+LCNihxtFwtThnl8BUIfPTE\niGzFWUlNdmjyDBfjizfHAch8fyweWQEma2siWeh0QPDVuyrzoifyabVHHV1IQ7kBTt5GTb432iek\nlGWvXCqWDnOpMklUhTL1kmzv5GeiiTvCUXU6OUIwvc2l6RQQX/TUdlWNcsts1OSaWrg6O0LIY1Kg\nLinrxZ33oieqg+nFtapRrm2tLgaDsHUuIJiMDuooUGfbJqIqVTXKHS73vml0OfMObgwG4evklFGR\nKgvUEYUoa2onvpeCy2u6aKPmapVXlmcJXi8DQlUF6vJMzUyzh0SVmJ6cKhyFpu1qju+lAFSXOWe7\n5yDUezCH2i7fehkQ7lh/FvcuXIrlxIzZKPxv+R82NTPNTTnUiOFRrgCrwSDmM120TNHG+B7M8W03\n43swA2j04htqu6rQy4AAADL0Zhj+3JTthrXFIyuYAkcLVehLLy6NySghOcrdnnEvhTJrCr5ey3n3\nYG7y7xhqu6rQuUVlEw+8OY5zQwHgHMQ648I2WympLwvNV889gn0ntuPOxzZi34ntuHrukcqOc/Nz\nX8AlS6cg0NVeXFXHC5HNhdlH5pzLvaPThHoP5lDbVYVejhB8ZVy47tK0CQptnGqqc6jdp15cHpOR\nAlBfpVQbZ8c245KlU6mPNynUdlWhcyMEk/vW+tpXUOeGtcUjK5iamcbUzLTx/Z+blneR9q1Pvbgi\nJr12m3TRuoR6D+ZQ21WFzgUEk160yb4Ck23+TW1Yi4ND6IGhzot0Vm+ti704E6ZB4diVC3j2l+Zx\n7MoF62Dge9rzxc234fj19+HM2BYoBGfGtuD49fc1PsILtV1V6OSUUdGwuWhfgek2/6aH3aEvUNc5\n1H7qmnvWTE8B3e3FmZrYM2JVz6tMRd8D2w57ncoM9R7MobbLt86NEGJFF8m83pHpTuYqht1lCpCF\nukBd5VB7eLEaQG96caZsLtQuCRJdVVdCREg6OUKImS6wDbNZG3DdsJbUtTLb8cXYdypo1mL18evv\nw0M3Pevc7i4xHSWUTZBYPLKCA3v8jhJC0Ke9B0mdDgjAuyMFm8BQZiezD12sLW861LbZQ8CMIv9Y\n0Xct09dY1/a+dHbKaJjNPLtrMbuyXN6UoU4bmbDdQ8CMInOmPXdW9F3L5DXWxb0vvQkIwLsbaYpS\nU5tKyXN5U4a6sGzCNj2VGUV2TFKxm+oEhcrkNVZnWnVdehUQYgdn9xoFBZeUvDLKvilN3vAhs+3x\n9ykv3AeTUUKI+xKaZPIa6+JItfNrCFkOzu7FgT1h3bi8TJntNu5gHmabnlrVYnXf+UyQaDuT11gX\ndzD3NiAA59+4HGh+Lt72Tdn2YACU20PQl7xwak7Ra6yLe196HRDS2MzFH9h2uLHRRZvXDIaxxx+W\nMhV8k52qvlj7uj0FlRGMJtYQ2vj6ZUBomdACga+0O/b47WWNZodfIzaj3q7thala/Jrtyp4FBgQH\ndY0OQl0n6OvmnaaYjkhdpj3L7oXxXcKiTbq0L4YBoaQD2w5jcab4eWXqw8TK3HWqTl16I4QsDgQm\nrzdX3KBmr0vZRgwIJZn01FyG36FNDaXp0hshRHUGgljZXfp9HR0A3co26uU+BFemZadNi+S1FTeI\nVWdqZtq402FbDDEPN6jZ69K+GAaEEkzXDro+/O7SGyEkpmsAVVQoLbNBrQ2j2Sp16X4JnDIqwbSK\natnh98SekWDXDZJCSBftWnExmwXhqooh2uyF6XswiHUlS44BoUJN30CnDk2+EbqW5WSaqBBrcgTK\nQNBNXgKCiNwC4CCAEQB/oap/PPR1ib6+C8C/AvhdVX3Gx7GbYjJK6Gspirp0KcupzCZH1zLtwzWw\nso6ffB5fm93mHBBEZATAVwB8AsApAN8TkUdV9YeJp90K4Kro368B+PPo/1YzDQqmw28GAztdyXIq\nu+PdZQQ6PTl1/rTk5PkJEwdn97Zi+pL88DFC2AngJVV9BQBE5OsAdgNIBoTdAB5WVQXwXRGZEJFN\nqjrv4fiNmp6cci5hEffAGAzsdCXdzzSbKGukabvPJW+6h6/BfvMREDYDeC3x+Smc3/tPe85mAOcF\nBBHZD2A/ALzv8q0emle9g7N7V3tXNoGBgcBNF4qLmawbFO1nsVlA5tw/5QluUVlVDwE4BABbr71B\nG26OlTgwDMvc1s+huJMQspxcVXm/42EMBlTER0CYA3BF4vMt0WO2z+ksjgCq05V0vzw+sokYDMiE\nj41p3wNwlYh8UEQuBHA7gEeHnvMogM/IwEcAnO7C+gHZu3ruEew7sR13PrYR+05sb/X9Z30wuVC7\n3u+4i8GAr6NqOI8QVHVZRD4P4HEM0k4fVNVZEfls9PWvAjiKQcrpSxikne5zPS61T9f2DdSlbDZR\nV7PWQnkddW1TJADIIPEnTFuvvUG/+PB3mm4GebLvxPbUrKAzY1vw0E3PNtCicBSlL9tWze3iqCAW\nwutoOCgBg4SGEEpW3LXzoqdVdUeZ7w1uUZm6q8p9A23vrRWlL5tkE63ZaNbhhIUQ9p90aVNkEgMC\n1aaqfQOhTCG4Kpu+HPp9M3wLYf9JCEGpCgwIVJuq9g10rbc2nL48PJ3U5ekgEyHsPwkhKFWBAYFq\nU9W+ga721mJ9DwDDQth/EkJQqgIDAtWqin0DXe2tUbYqXkc261AhBKUqMCBQ0EzepF3trVF9yqxD\ndXFTJO+YRsGK36SXLJ2CQFffpMObkLp0xypqRt46VJ9whEDBslks7mJvrYy2p9/WZfg8jadMOQLd\nWYcyxYBAwer6YrFvXUm/rVraeVIIgPM36fZtHYpTRhSsrDdj396kprJGVLfMfI71fhLSzpNAo6Dw\nrj6uQ3GEQMEqu1jc9LRJU8fPGjkJujVacD2/2SNMxZmxLb2ebmNAoGCVSe1retqkzPF9BZCs9NuY\n7816TQQ+H3/f7DRl1tRicTvqlKYLn9ke32eRtLSfNUwhuP9TC1Y/1/RYy3Ih3h69GGPnFq0DhGlw\n8fH3DbkwnQ8uxe24hkCd0vRCtG22is90x7Xpt+l8rb+ktXtU38Z/OPcvuSnCaUzTiwE/f1+mKWfj\nlBF1SpO7lgcXMLtsFd8BLE6/zeoF+1okNWmf6RSVTXqxzd83b9TBNOV0HCFQpzx1zT04NzK25rG6\nskU+9sKXISnBQCGZx68qk6rqXrBp+0wCh01QNP372ow66F0cIVCnNFljJi97Jev4VZbdqLIXnNbu\nNCaBw6bXb/r37VoF3LowIFDnNDUdkJe9kqWtRdKG2/2Lde/DuuWzGNVzq88xDWy2QdHk79v0WlJb\nMSAQeVK2t9/W+ezhdpdNQ60iKLICbjkMCESetLW374tLYPMdFFkBtxwGBCIDpr3ftvb2u6bvwbks\nBgSiAk3vfqZyGJztMe2UqABr5VNfcIRANKTvtfKbLg5IzWFAIEroe618To/1G6eMiBLaXiv/6rlH\nsO/Edtz52MZS90Dg9Fi/MSAQJRTVyg+5GJqPcg3c0NVvnDIiSmhzrXwf5Rq4oavfOEIgSmiyOJ4r\nH737Nv/+5I4jBOoNk+yZNm9o8tG7b/PvT+4YEKgXbLJn2rqhyVe5hrb+/uSOU0bUC33InuGdwMgV\nRwjUC33Jnsnr3XPDGRXhCIF6oao7k7UF7yBGJpwCgoisF5EnROTH0f/vy3jeT0TkORGZEZGTLsck\nKqPv2TNtmjJz3VxH5bmOEO4G8C1VvQrAt6LPs/xnVZ1U1R2OxySy1vf59bZMmXEk0yzXNYTdAG6M\nPp4G8G0A/8PxZxJVwjR7potz7W3ZcMZ7ITfLdYRwmarORx//FMBlGc9TAMdF5GkR2Z/3A0Vkv4ic\nFJGTby2+4dg8Ijtd7aG2ZcqsLSOZrioMCCJyXESeT/m3O/k8VVWklYQc+LiqTgK4FcDvi8hvZB1P\nVQ+p6g5V3fHeiQ02vwuRszbNtdtoy5RZ3xf/m1Y4ZaSqN2d9TUReF5FNqjovIpsALGT8jLno/wUR\n+QaAnQCeLNlmosp0uYfahg1nvBdys1ynjB4FMBV9PAXg74afICIXi8h4/DGATwJ43vG4RJVgD7VZ\nbRnJdJXrovIfA/gbEfk9AK8C+B0AEJEPAPgLVd2FwbrCN0QkPt5fq+r/cTwuUSXYQ7VTxQJ8G0Yy\nXeUUEFT15wB+M+Xx/w9gV/TxKwB+1eU4RHVhcTdzvLta97B0BdEQ9lDNMEW0e1i6gohK6fICfF9x\nhEBEhdLWCtqy2Y3McYRARLmyNuu98v5PtGKzG5ljQCCiXFlrBR/62RNWKaIsWhc+ThkRUa68tQKb\n+lDMSAofRwhEAQmxF+1js15XS4J0DQMCUSBCLaznozAeM5LagQGBKBCh9qJ9lJNgSZB24BoCUSCy\ne9GncOdjGxvdNe26WY8lQdqBIwSiQGT1lgUIagqpDBataweOEIhSNHHXtLRe9LA2l4ZgSZDwMSAQ\nDWkqRXK4sB6gkJTncSGWqsIpI6IhTS7uvrj5Njx007O4/1MLODu2JfU5XIilqjAgEA0JJUWyLfdB\npu7glBHRkLqKthWtU/DeDFQ3BgSiIXWkSJquU3AhlurEKSOiIXWkSIa6CY36jSMEohRV98xDWacg\nSuIIgagBLOVAIWJAIGoAM4goRJwyImoAM4goRAwIRA1hBhGFhlNGREQEgAGBiIgiDAhERASAAYGI\niCIMCEREBIABgYiIIgwIREQEgAGBiIgiDAhERASAAYGIiCIMCEREBIABgYiIIk4BQUT+m4jMisg7\nIrIj53m3iMgLIvKSiNztckwiIqqG6wjheQD/FcCTWU8QkREAXwFwK4DrAHxaRK5zPC4REXnmVP5a\nVX8EACKS97SdAF5S1Vei534dwG4AP3Q5NhER+VXH/RA2A3gt8fkpAL+W9WQR2Q9gf/Tpv92186Ln\nK2ybDxsAvNF0IwywnX6xnX6xnf5cU/YbCwOCiBwHcHnKl+5R1b8re+AsqnoIwKHo2CdVNXNtIgRt\naCPAdvrGdvrFdvojIifLfm9hQFDVm8v+8MgcgCsSn2+JHiMiooDUkXb6PQBXicgHReRCALcDeLSG\n4xIRkQXXtNPfFpFTAH4dwGMi8nj0+AdE5CgAqOoygM8DeBzAjwD8jarOGh7ikEv7atKGNgJsp29s\np19spz+l2yiq6rMhRETUUtypTEREABgQiIgoEkxAsCiD8RMReU5EZlzSq8pqS7kOEVkvIk+IyI+j\n/9+X8bxGzmfR+ZGB+6Ov/0BEPlxX2yzbeaOInI7O34yI3NtAGx8UkQURSd2zE9C5LGpnCOfyChH5\nvyLyw+hL4sWXAAADAklEQVR9fiDlOY2fT8N22p9PVQ3iH4BrMdhQ8W0AO3Ke9xMAG0JuJ4ARAC8D\n+BCACwF8H8B1NbfzfwG4O/r4bgB/Esr5NDk/AHYBOAZAAHwEwD818Lc2aeeNAP6+iddiog2/AeDD\nAJ7P+Hrj59KwnSGcy00APhx9PA7gxUBfmybttD6fwYwQVPVHqvpC0+0oYtjO1XIdqvo2gLhcR512\nA5iOPp4G8F9qPn4ek/OzG8DDOvBdABMisinAdjZOVZ8E8GbOU0I4lybtbJyqzqvqM9HHZzHIjNw8\n9LTGz6dhO60FExAsKIDjIvJ0VOYiRGnlOpz/WJYuU9X56OOfArgs43lNnE+T8xPCOTRtw0ejqYNj\nIrKtnqZZCeFcmgrmXIrIfwKwHcA/DX0pqPOZ007A8nzWUctolacyGB9X1TkR2QjgCRH556jn4U3d\n5TrKymtn8hNVVRHJyi+u/Hx23DMAtqrqWyKyC8A3AVzVcJvaKphzKSLvBfC/AdylqmeaaIOJgnZa\nn89aA4K6l8GAqs5F/y+IyDcwGNZ7vYB5aGct5Try2ikir4vIJlWdj4azCxk/o/LzmcLk/IRQ8qSw\nDck3oaoeFZE/E5ENqhpSAbQQzmWhUM6liKzD4CJ7RFX/NuUpQZzPonaWOZ+tmjISkYtFZDz+GMAn\nMbgnQ2hCKNfxKICp6OMpAOeNbBo8nybn51EAn4kyOj4C4HRiCqwuhe0UkctFBvXfRWQnBu+pn9fc\nziIhnMtCIZzL6Ph/CeBHqnpfxtMaP58m7Sx1PuteHc9ZNf9tDObi/g3A6wAejx7/AICj0ccfwiDT\n4/sAZjGYwgmunfpuJsKLGGSpNNHO/wjgWwB+DOA4gPUhnc+08wPgswA+G30sGNxY6WUAzyEn86zh\ndn4+OnffB/BdAB9toI1fAzAP4Fz02vy9QM9lUTtDOJcfx2Bd7QcAZqJ/u0I7n4bttD6fLF1BREQA\nWjZlRERE1WFAICIiAAwIREQUYUAgIiIADAhERBRhQCAiIgAMCEREFPl3K/jytc8PaWQAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_decision_boundary(svc_gamma100, axis=[-1.5, 2.5, -1.0, 1.5])\n", + "plt.scatter(X[y==0,0], X[y==0,1])\n", + "plt.scatter(X[y==1,0], X[y==1,1])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Pipeline(steps=[('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('svc', SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n", + " decision_function_shape=None, degree=3, gamma=10, kernel='rbf',\n", + " max_iter=-1, probability=False, random_state=None, shrinking=True,\n", + " tol=0.001, verbose=False))])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "svc_gamma10 = RBFKernelSVC(gamma=10)\n", + "svc_gamma10.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+MHdV1B/DvYdeQLRg2xhgcmx9JZVtg0azBcgmglFIS\nYaeSm8qtoGtlZUW1iAIYJZWK6opIkaia/oFkSNLIakkW4SZCtElosUtxnIgUhSgGFvCG2DE0CG8X\nNkDXNsoSvMvpH2+eefs8897Mmztzz535fiTLb9/Ovrk7+96c++Pce0VVQUREdJrvAhARkQ0MCERE\nBIABgYiIIgwIREQEgAGBiIgiDAhERATAUUAQkftFZEpEDiR8/zoROSoiY9G/u1ycl4iI3Ol39Drf\nAvBVAA90OObHqvrHjs5HRESOOWkhqOoTAN5y8VpEROSHqxZCGleLyPMAJgD8laqOxx0kIlsBbAWA\n0wfOvPL8i1eVWEQiorC9+otn3lDV83r52bICwjMALlLVt0VkA4DvAVgRd6Cq7gSwEwAuuvRK/eID\nPympiERE4btj3Rmv9PqzpWQZqeoxVX07erwbwAIRWVzGuYmIKJ1SWggicgGA11VVRWQdGoHozTLO\nTW6NjI2mOm50aKTgkhCRa04Cgoh8G8B1ABaLyBEAXwKwAABU9RsANgH4nIjMApgBcJNymVVztq1+\nENO75py8VqfAwWBBZJOTgKCqN3f5/lfRSEslj7atfnDe1+03/+mxcsrRGiwGh/tOPt4xvrmcAhBR\nrDKzjKhkrQFgetdcaTf8LFqD0ghGMTjcx8BA5AkDQsU0g4DVANDN9K65k4EBYKuBqEwMCIFr7/cP\nMQjEaf5OIxjlmANRSRgQAtXsh69KAOik+bsyMBAViwEhIC6zgELEwEBULC5/HYBtqx/EyNhorYNB\nq7RzIYgoG7YQDGu2COrQLZTVyBgzkohcY0AwiIEgneldc9g23MiqYmAgyo9dRsawayib6V1zjcDQ\nNumOiLJjQDCiOU5AvZneNcfrR5QTA4IBdc8ecolBgah3DAieMRi4NzI2ysBA1AMGBI8YDIrFwECU\nDbOMPGEwKE8zRRVgNhJRJwwIHlQxGOw+PoD73lqI12b7cEH/HG5bdBwbFs74LtZJrWsjtS65DTBI\nEDUxIJSsqsHgy78+B+9oowdycrYfX/71OQBgKig0tV//5lyGVgwSVEcMCCWqYjAAgPveWngyGDS9\no6fhvrcWmgwI7eL+JiOIH3vgOkpUZQwIlNtrs32Zng9Z0iA1AwVVAQNCSXy1Dsro27+gfw6Ts6e+\nlS7or15rKAkDBVUBA0KFldW3f9ui4/POAwAfkPdw26Ljzs4RqqRAwYX5yCIGhJL4aB2U1bfffC3L\nWUbWNLcKTdKeCdWKgYSKwoBQAl+To8rs29+wcIYBwKFOFYi41NkmBgvKgwGhwti3X11JAaM9WDBA\nUBYMCBXGvv16ag0Wrd1SHLegbhgQKox9+9SqddyC2U8UhwGhYL4XV2PfPsVpvi8ZGKgVAwJRjTUD\nA7uTCODy10SE93ec41ak9caAUCB+uCg03Iq03hgQClTFheyoHthaqCcGhIrbfXwA619ZgjUvLcX6\nV5Zg9/EB30WiQLC1UD8MCAWxULtqrmU0OdsPhZxcy4hBgbJgUKgPBoSCWOgu6rSWURW1tob+4OXz\ncd3/nM+WkSMMCvXAgFAAC60DoF77FLS3ho5qH6bf62PLyCEGhepjQCiAhdYBkLxmURXXMoprDbVy\n1TKq+5gMg0K1OQkIInK/iEyJyIGE74uI3Csih0XkeRG5wsV5LbL0gblt0XF8QN6b91yvaxlZvxGm\nafXkbRlxTIaqzlUL4VsAbuzw/fUAVkT/tgL4R0fnNcVSMAAay1bcdd5RLO2fhUCxtH8Wd513NPNS\nFiHcCNO0enppGbUGwr+dGqzVmEwSa+9zcsfJ0hWq+oSIXNLhkI0AHlBVBfCUiAyKyFJVnXRxft98\nbY+Zhou1jJIGp/9mahD3vbXQxIJ5cSu7tuqlZdS+45wmHFfFMRmqp7LGEJYBeLXl6yPRc6cQka0i\nsl9E9r89/UYphcvDcjBII01XUPINz05rob01dI7MYfC0uVwto27jEk1VHJPphq2EajK3uJ2q7gSw\nEwAuuvTKpEqZCVUIBmn2XE7aaKepiG05e+F6Zdd0NX/FtQPvODtnN7uPD3A5cypMWS2ECQAXtny9\nPHouWCNjo0EHAyD9PIW4wel2Vew2SVfzF/z3zAcKLwsQxlgOha2sgPAIgM9E2UZXATga6vjBttUP\nVqa5nHaeQmt3TFJPugIms4/ySBMIgfKCYd0mGlL5nHQZici3AVwHYLGIHAHwJQALAEBVvwFgN4AN\nAA4D+A2ALS7OW7aRsVFMj/kuhTtZ9lxudse0dzO9TxK7nELVvuOcAHgPcspxZY0h1GmiIfnhKsvo\n5i7fVwCfd3EuH6rSImjXy57LrTfJydk+oO0GaWU8wZXWcYm4YFjmHtVZAjhRLzhTuYuqBgOg93kK\nGxbOYM/FUzF15Yaq1lhdzevolcuJhkRxzGUZWRF6BlFaeTJz6lhj9blHdXsXFrOMyDUGhBh1CQZ5\n9dLllEddUi47/Z4+A1Kr0aER30WgAjAgtGEwSK/MGmvaORNJPxtKIMnzexLlxYDQgsEgu7JqrJ1S\nLjud3+INtlOA6vX3LBNbB9XFQeVIFSaalans1U97Tbm0lrvfbXIZU0vJJwYEVC+TqOibtY8Zs+ec\nFj9BLOn5Jms32G4ByvoeFmwdVFvtA4K1YJD3Zl7GzdpHrVsTVrVKer7J2g22W4CynFrKYFB9tQ4I\nFoNB3pt5GTdrH7XuYwmrjiY932TtBtstQPme65CEwaAeajuobC0YAG4GFJNuypOzfVj/yhInmTY+\n5h/0ek5ruftpUnWtpJY2MRjURy0DgsVgALipeXdaqrr5fN5Mm7LnH+Q9Z9obbBnpqdYCVDcMBvVS\nu4CwbfWDXheo63TTcVHzjt85TOFyzSEfN7Wiz1lmeqq1FkASBoP6qV1A8Jla2u2m46LmHXfjnCyg\nz9/HTa3Ic4aQ/18mBoN6qlVA8N1V1O2m46oW3H7jXP/KktqtOZSVtfRUXxgI6q02AcF3MADS3XSK\nqAX76PMPTR0X6mvHYEC1Tjstm6+ceKupjJb0kp5a9mxtoqLVooVgoXUA+K2pWx7IHBx20y2TZ3wo\na3edxTWS8mDrgIAaBARfwaDbAmYhpBwWof3mv2N8MzDu6MWHGllkTVkDRJagWaVB6MHhPnd/Awpa\n5QOCD91qj6HdMPJqDQI7xjc7f/2VEw/jmoN3Y+HMBI7tW4YnV23HoWWbsG24ERyKyCyr0iB0EX8T\nClOlA4Kv1kGVao+9OCUAFFj7XDnxMG544QtYMNe4rmfPHMENL3yhcW5EN7oh90ubV2UQmq0DalXZ\ngOBzAlqVao9ZjQ6NlHqDuebg3SeDQdOCuRlcc/BuHFq26eRzO8Y3Ow0MzNyiKqpslpHPCWjWVtgs\nw+jQiJeByYUzE5me3zG+2ckgNjO3qIoq2ULwvTxFnWqPvrNTjg8sw9kzR2KfT+KqtVDH8aCqax2P\nOj7w/nhUXVSuhWBhG0yftceycuMHh/u8BwMAeHLVdpzom/87nugbwJOrtnf9WVethZD5/qxY0hyP\nOnvmCAR6cjxq5cTDvotWmsoFBCtv8A0LZ7Dn4ik8+7uT2HPxVGnBoOjNcQaH+zA43GcmM+XQsk3Y\ne/k9ODawHArBsYHl2Hv5PalrdQwK81N166zTeJQrKycexpZ9a3D7o0uwZd8ac8GmUl1GvruKfCs6\nu8lSIGh1aNmmXM36HeObMQIbkxfJn6zjUVl1yoiz0i1VmRaCha4i34rMbrIaDFypcyuh7p+bpqRx\np07jUVmU0QLJqxIBgcGgocjspioHA6DY3y+ENY/YbZRvPCqNolsgLlQiIFBDUfsHWxg8LkMRrYQy\nxnVcYIUq/3hUN0W3QFwIfgyBrYP3FbFWUl2CQVFCmrW+bfWDlW8JdpN3PKqTJ1dtnzeGALhtgbgQ\ndECwGgzK2Js3icvc+Lota7BjfDO2Dbt9T4U0a3161xww5LsU1dUMNJbnOQQbECwHgyosi+x6ELmu\nE35CW/OIrYRiFdkCcSHIMQSrwQDo3EUQEtfBoH3Czyee24a//K+V5vKxXd8MXW+8U/QA9fSuOQ4w\n11iQLQSrwQBI7gqYnO3DmpeWBrEHgutxg7h0u359F/0n3gVgMx/bFZcb7wAopfU5vWsO24bdtBTq\n2jIMlZMWgojcKCIHReSwiNwZ8/3rROSoiIxF/+7q9VzWay/JXQFiOsukqYhMmzRpddbysV3KMmu9\nUwuzzNani0oXl4IIT+6AICJ9AL4GYD2AywDcLCKXxRz6Y1Udiv59uZdzWe4qaorrImhntQupqMln\nadPqrORj+8ys6tTCnCx5gDrvfiIhTMSi+Vy0ENYBOKyqL6vquwC+A2Cjg9edx1Iw6NSP276wHaCx\nr2Exy6SowcS4CT9xLOVj+9Kphdn4F/+dosYU8gSFECZi0XwuAsIyAK+2fH0keq7d1SLyvIjsEZHV\nSS8mIltFZL+I7H97+o2Tz1sKBt0mGrV2ESwNZG+EImvF7RN+ZhYswqwsmHeMtXxsX62ENC3M+RTv\nFdwd2WtQCGEiFs1XVpbRMwAuUtXfA3AfgO8lHaiqO1V1raquPWtwMQB/W2HGydqPW9TsYZfKuPkd\nWrYJ37z+Wdz7qSns/ORBPP7RewubEeqKj6DQ2sJMal0CCoHiNCjaWw1FdUeOjI1m/hwWvRQEueci\ny2gCwIUtXy+PnjtJVY+1PN4tIl8XkcWq+ga6sBQMgOwTjYqYPeySr5qw9Xxsn5qTC9e/siR2DsPS\n/jnsuXgKQy8tjf35pLEGF0bGRlOPNYUwEYvmcxEQfgZghYh8GI1AcBOAv2g9QEQuAPC6qqqIrEOj\nZfJmtxc+d6brIaXrZaKR1Z21uCxFd6NDI94qJd123jsNQFznUtHN/uldcxjBaKr3DwN/WHK/d1R1\nFsCtAB4D8CKAh1R1XERuEZFbosM2ATggIs8BuBfATaqa1B42LYQuoDQYDNLzda267byXNNKQZQQi\nj5GxUfNp4JSNWL4vr7nkEv3hdnv9jT7XKnKFASE7a92XyV1Ks9hz8VSpZan6fhkhuWPdGU+r6tpe\nfjbImcq+We0CSovBoDfN62YlMHTrUioTF8arhiDXMqLeMRjkNzo0YmKHtW5dSmVjF1L4GBBqhMHA\nnR3jm80EhbTLYhSldaLmx/7uXJz344dKLwO5wYCQUgjbIFK5rAQFn5Imal78HtcrChEDQgqhbIPY\nSd1vXEXZMb7ZTBeSD0kTNb/y72d6KhHlwYCQQlX2OKDihNBaKKKV22mippXBd0qvtgEhy4cjpG0Q\nyZ9ma8Giolq5SRMyra3VRenUMiBk/XDwTU9ZWAwKRbVyqzJRkxpqGRCquEAd2WItKBTVyrWW+kr5\n1HJiWtUWqCObRodGzOzjkbQGV3MvhTzv6dAnatL7ahkQqrRAHdm2Y3wztg37Dwpxs5qbeykAxe3P\nnJXVPZitlsu1WnYZ3bboOPrblgDrR7W7gHzfkOrMwho/7V07Ze6lkJbVPZitlqsItQwIACBtH4b2\nr9PihDU7Vk48jC371uD2R5dgy741pj6wFsYUWmc1Jy1p6TNzzuoezFbLVYRaBoT73lqIE20B4AQk\nc+2oChPWilbWTTqEWpyFoNBkMXPO6h7MVstVhFoGBFcZF5yw1lmZN+k61eJcsJg5Z3UPZqvlKkIt\nA4Kr2lFoE9bKXomyzJt0nWpxLlhMF7W6B7PVchWhlllGadaRT7MJTi/ZSj6VvWZ9mTfp4wPLcPbM\nkdjnKZ61zDmrezBbLVcRahkQus0raI4NNANGUkqepQ1KLCrzJv3kqu244YUvzGuRVLUWVxQLOwFa\n3YPZarlcq2VAADrXjjqNDbT+TBET1ix8KF0p8iYdlxe+9/J7alGLK0LaSlCd1GXuQavaBoROsowN\nuGx2V+1DWVRTuzlY3Qw0zcHqvZffg29e/2zuctdR2kpQViNjo6ayq9JKeo8BqHRQYECI4WtsoKgP\npU9pm9pZamOdBqstf1gtLwcdWoJE0dK+x6rWiqhlllE3vlLyiv5QWq2pZU1PDTGjyHIwAGzOS/Ap\nzXsshLkvWTEgxPCVklfXD2XW9NQ65YWXpchKUNnpzi6keY9Vce4LA0ICH5uXW5wsVIasNf7Q8sKt\ntw6AYitBIa6jleY9FmJLtRuOIRhS12W2s6anhpQXHkIwaCpyXsK21Q+aWOQvrTTvsSrOfWFAMKao\nD+XgcB8w7vxlneglPTWEvPCQgkHRyp4U6UK391gV576YDgh9i3yXgMoQUo2/Dqo0F6ZI89+3R6DS\nh/6WMYQQ37+mA8LUzLkYHO4Lsg+yLlyl3YVQ488i1NZB1ebCFK35nq3KnAXzg8o7xjc3ujsolyL6\nb6uYdudCqMEAKHYF3xCzjdKoUraR+YAANG5mVnPou7GwgU5RAbVKHwRXQr/pcYJadlXKNgoiIDSN\nDo0E1Vqo+gY6VfoguBJ692aRc2FCyjLKokrzYoIKCEBYrQUrG+gU9UGs0gfBBR+tA9ct0LrOhckj\ntHkxnQQXEJpCaC1UvfldpQ9CiIpogRY1QS2USlwvDi3bhL2X34NjA8uhEBwbWI69l98T3IAyYDzL\nqJsd45uBoUbNzGJT3cIGOkV+EC2ki1ZtcbEsiloM0drGOSGoSpZc0AGhacf4ZmwbthcU6rCBjs8P\nQl2XKG4KpQVa5dZB1TjpMhKRG0XkoIgcFpE7Y74vInJv9P3nReQKF+dtZXFswfe+tdauh2t1z3IK\nYTHEqr8HqyZ3QBCRPgBfA7AewGUAbhaRy9oOWw9gRfRvK4B/zHveJNbGFnwsklcX1rKcys6isT4A\nzGAQHhcthHUADqvqy6r6LoDvANjYdsxGAA9ow1MABkVkqYNzx7LYWiibpaBYFItZTkVd97hsIt8t\n0CSDw321//yFykVAWAbg1Zavj0TPZT0GACAiW0Vkv4jsf3v6jVwFq/Obsqo5360sZjkVcd07ZRNZ\naoE2A0Ed3ntVZS7tVFV3qupaVV171uDi3K83OjRSu8BQh9YBYDfdz/X7zcp8liQMBNXhIstoAsCF\nLV8vj57LekyhRodGgl5jJq3B4b5afTCtpvu5fL9ZzSY6GfiMLqtO2bloIfwMwAoR+bCInA7gJgCP\ntB3zCIDPRNlGVwE4qqqTDs6dibUB5yJYDwYrJx7Gln1rcPujS7Bl35pKL4Tn6v1mKZuo2Rrw3equ\n0/uoTLlbCKo6KyK3AngMQB+A+1V1XERuib7/DQC7AWwAcBjAbwBsyXveXlmds+CC5U1wgHrOG3Ax\nebKs+SxxweuUCoaB95eV91EVJ0WKqvouQ6KLLr1Sv/jATwp7/Sp1IYXQVbRl35rYLQePDSzHN69/\n1kOJytdc7yhrcHC1aU1Si8X6e6eVhfdRe1ACGgkNFsaw7lh3xtOquraXn63ETOVejQ6NmF32IosQ\nggFQ7LyBUGprJ/9OQ/MXw+v2Hky7nESnLqod45tN1PDzsjD/pNOkSIvvu7RqHRAA++shdTM6NBLM\nh7yoTcmtdCFkNS+Iu9pvOJD3Qh4WNre3EJSKYC7t1JfmZLaQBp19D+xlVdS8gbovYVE3FuafWJwU\n6QIDQpsQAoOFLI9eFDVvoKq1NYpnYf6JhaBUhNp3GSVpdiVZGngOMQi0K2LegIUuBCpXEe+jLONQ\nFpZ+LwIDQhftN+Fes0Syam2hhDBgXJQ0H9InV22PzfgIvbZG5ellHMrqpMg8GBAyat6ctw2ful1i\nniBxSgCoweBgN2k/pFWtrVF5qpo1lBUDQo/iau1xQSL1azEAnCLLh7SKtbVehJJ+61v7dVoY0+UI\n1G8cigHBoTp37RSBg8XZhJp+W7a466QQAKdO0q3bOBSzjMisqqb2FSWpRXXj2Oe43k+LuOsk0Cgo\nvK+O41BsIZBZvQ4W++428XX+pJaToFqthbzXN7mFqTg2sLzW3W0MCGRWL4PFvrtNejm/qwCSlH7b\n5HqQ1Efgc/H3TU5Trs+aWklqvbgdVY/vhc+ynt/lImlxr9VOIbj3U1OZXjftuWbldLzbfyYGTkxn\nDhBpg4uLv6/lhelcyLO4HccQqFJ8D0RnzVZxuezG/Bm88VyNv8SVu1/fxe+c+D8I9GTNPc24RfMG\nffbMka4/6+Lva2Gms1XsMqJK8TlruXEDy5at4jqANdNvk2rBrgZJ05QvbRdVlvTiLH/fTq0OpinH\nYwuBKsXnGjPXHLwbEhMMFJJ4/qIyqYquBactX5rAkSUopv37Zml10PvYQqBK8TlruVP2StL5i1x2\no8hacFy546QJHFlq/Wn/vpx53BsGBKocX90BnbJXkoS67EZ7ud9Z8EEsmD2Ofj1x8pi0gS1rUEzz\n9/U9lhQqBgQiR3qt7Yfan91e7l7TUIsIilwBtzcMCESOhFrbdyVPYHMdFLkCbm8YEIhSSFv7DbW2\nXzV1D869YkAg6sL37GfqDYNzdkw7JeqCezZTXbCFQNSm7mvl+14ckPxhQCBqUfe18tk9Vm/sMiJq\nEfpa+SsnHsaWfWtw+6NLetoDgd1j9caAQNSi21r5lhdDc7FcAyd01Ru7jIhahLxWvovlGjihq97Y\nQiBq4XNxvLxc1O5D/v0pP7YQqDbSZM+EPKHJRe0+5N+f8mNAoFrIkj0T6oQmV8s1hPr7U37sMqJa\nqEP2DHcCo7zYQqBaqEv2TKfaPSecUTdsIVAtFLUzWSi4gxilkSsgiMgiEXlcRH4Z/f/BhON+JSIv\niMiYiOzPc06iXtQ9eyakLrO8k+uod3lbCHcC+IGqrgDwg+jrJH+oqkOqujbnOYkyq3v/eihdZmzJ\n+JV3DGEjgOuix6MAfgTgr3O+JlEh0mbPVLGvPZQJZ9wL2a+8LYTzVXUyevwagPMTjlMAe0XkaRHZ\n2ukFRWSriOwXkf1vT7+Rs3hE2VS1hhpKl1koLZmq6hoQRGSviByI+bex9ThVVcQtCdlwraoOAVgP\n4PMi8vGk86nqTlVdq6przxpcnOV3IcotpL72LELpMqv74L9vXbuMVPWGpO+JyOsislRVJ0VkKYCp\nhNeYiP6fEpHvAlgH4Ikey0xUmCrXUEOYcMa9kP3K22X0CICR6PEIgO+3HyAiZ4rIwuZjAJ8EcCDn\neYkKwRqqX6G0ZKoq76Dy3wN4SEQ+C+AVAH8OACLyIQD/pKob0BhX+K6INM/3L6r6nznPS1QI1lCz\nKWIAPoSWTFXlCgiq+iaAP4p5/n8BbIgevwzgo3nOQ1QWLu6WHndXqx4uXUHUhjXUdJgiWj1cuoKI\nelLlAfi6YguBiLqKGysIZbIbpccWAhF1lDRZ7+XzPhHEZDdKjwGBiDpKGiv4yK8fz5QiykXr7GOX\nERF11GmsIMv6UMxIso8tBCJDLNaiXUzWq+qSIFXDgEBkhNWF9VwsjMeMpDAwIBAZYbUW7WI5CS4J\nEgaOIRAZkVyLPoLbH13iddZ03sl6XBIkDGwhEBmRVFsWwFQXUi+4aF0Y2EIgiuFj17S4WnS7kJeG\n4JIg9jEgELXxlSLZvrAeoJCY4zgQS0VhlxFRG5+Du4eWbcI3r38W935qCscHlscew4FYKgoDAlEb\nKymSoeyDTNXBLiOiNmUt2tZtnIJ7M1DZGBCI2pSRIpl2nIIDsVQmdhkRtSkjRdLqJDSqN7YQiGIU\nXTO3Mk5B1IotBCIPuJQDWcSAQOQBM4jIInYZEXnADCKyiAGByBNmEJE17DIiIiIADAhERBRhQCAi\nIgAMCEREFGFAICIiAAwIREQUYUAgIiIADAhERBRhQCAiIgAMCEREFGFAICIiAAwIREQUyRUQROTP\nRGRcRN4TkbUdjrtRRA6KyGERuTPPOYmIqBh5WwgHAPwpgCeSDhCRPgBfA7AewGUAbhaRy3Kel4iI\nHMu1/LWqvggAItLpsHUADqvqy9Gx3wGwEcDP85ybiIjcKmM/hGUAXm35+giA3086WES2Atgaffnb\nO9adcaDAsrmwGMAbvguRAsvpFsvpFsvpzqpef7BrQBCRvQAuiPnWdlX9fq8nTqKqOwHsjM69X1UT\nxyYsCKGMAMvpGsvpFsvpjojs7/VnuwYEVb2h1xePTAC4sOXr5dFzRERkSBlppz8DsEJEPiwipwO4\nCcAjJZyXiIgyyJt2+mkROQLgYwAeFZHHouc/JCK7AUBVZwHcCuAxAC8CeEhVx1OeYmee8pUkhDIC\nLKdrLKdbLKc7PZdRVNVlQYiIKFCcqUxERAAYEIiIKGImIGRYBuNXIvKCiIzlSa/qVSjLdYjIIhF5\nXER+Gf3/wYTjvFzPbtdHGu6Nvv+8iFxRVtkylvM6ETkaXb8xEbnLQxnvF5EpEYmds2PoWnYrp4Vr\neaGI/FBEfh59zrfFHOP9eqYsZ/brqaom/gG4FI0JFT8CsLbDcb8CsNhyOQH0AXgJwEcAnA7gOQCX\nlVzOfwBwZ/T4TgBfsXI901wfABsA7AEgAK4C8FMPf+s05bwOwH/4eC+2lOHjAK4AcCDh+96vZcpy\nWriWSwFcET1eCOCQ0fdmmnJmvp5mWgiq+qKqHvRdjm5SlvPkch2q+i6A5nIdZdoIYDR6PArgT0o+\nfydprs9GAA9ow1MABkVkqcFyeqeqTwB4q8MhFq5lmnJ6p6qTqvpM9Pg4GpmRy9oO8349U5YzMzMB\nIQMFsFdEno6WubAobrmO3H+sjM5X1cno8WsAzk84zsf1THN9LFzDtGW4Ouo62CMiq8spWiYWrmVa\nZq6liFwCYA2An7Z9y9T17FBOIOP1LGMto5McLYNxrapOiMgSAI+LyC+imoczZS/X0atO5Wz9QlVV\nRJLyiwu/nhX3DICLVPVtEdkA4HsAVnguU6jMXEsROQvAvwK4Q1WP+ShDGl3Kmfl6lhoQNP8yGFDV\niej/KRH5LhrNeqc3MAflLGW5jk7lFJHXRWSpqk5GzdmphNco/HrGSHN9LCx50rUMrR9CVd0tIl8X\nkcWqamlKjk98AAABOUlEQVQBNAvXsisr11JEFqBxk92lqv8Wc4iJ69mtnL1cz6C6jETkTBFZ2HwM\n4JNo7MlgjYXlOh4BMBI9HgFwSsvG4/VMc30eAfCZKKPjKgBHW7rAytK1nCJygUhj/XcRWYfGZ+rN\nksvZjYVr2ZWFaxmd/58BvKiq9yQc5v16pilnT9ez7NHxDqPmn0ajL+63AF4H8Fj0/IcA7I4efwSN\nTI/nAIyj0YVjrpz6fibCITSyVHyU81wAPwDwSwB7ASyydD3jrg+AWwDcEj0WNDZWegnAC+iQeea5\nnLdG1+45AE8BuNpDGb8NYBLAiei9+Vmj17JbOS1cy2vRGFd7HsBY9G+DteuZspyZryeXriAiIgCB\ndRkREVFxGBCIiAgAAwIREUUYEIiICAADAhERRRgQiIgIAAMCERFF/h8g3fN7ZAQ7dAAAAABJRU5E\nrkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_decision_boundary(svc_gamma10, axis=[-1.5, 2.5, -1.0, 1.5])\n", + "plt.scatter(X[y==0,0], X[y==0,1])\n", + "plt.scatter(X[y==1,0], X[y==1,1])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Pipeline(steps=[('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('svc', SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n", + " decision_function_shape=None, degree=3, gamma=0.5, kernel='rbf',\n", + " max_iter=-1, probability=False, random_state=None, shrinking=True,\n", + " tol=0.001, verbose=False))])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "svc_gamma05 = RBFKernelSVC(gamma=0.5)\n", + "svc_gamma05.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH9VJREFUeJzt3X+MVeWZB/Dvw51ZGe3oSBGZDir9AUSt2UEJdsU0rouN\nQzdhu2E3tpAS0yyxqZbGNFmzJDZpYra7f5hFbeuSrhaj26ZhW0tWWFdqG7skNiqighaKbqkzHZ0q\nC4x1aGeGZ/+45w53Lufce36857zvec/3kxBm7r3MeTlz73neH8/7HFFVEBERzbHdACIicgMDAhER\nAWBAICKiAAMCEREBYEAgIqIAAwIREQEwFBBE5CERGRORAxHP3yAiJ0Rkf/DnbhPHJSIic7oM/Zzv\nAngAwCNtXvNzVf1LQ8cjIiLDjIwQVPUZAMdM/CwiIrLD1AghjutE5GUAIwC+qqoHw14kIpsAbAKA\n884555olCxcW2EQiKsK7PR+03QRvvfnLfe+o6kVp/m1RAWEfgEtV9T0RWQPgcQBLwl6oqtsAbAOA\n5YsX60+3bCmoiURUpO2DG203wUtfWXnO0bT/tpAsI1U9qarvBV/vAtAtIvOLODYREcVTSEAQkYUi\nIsHXK4PjvlvEsYnITRv3b7fdBGphZMpIRL4H4AYA80VkGMDXAHQDgKo+CGAdgC+KyBSACQC3KMus\nEhE5xUhAUNXPdnj+AdTTUomIZmy+8lFsPbjBdjMowJ3KREQEgAGBiCw6/ti07SZQEwYEIrJq85WP\n2m4CBRgQiIgIAAMCEVnGaSN3MCAQEREABgQicgDXEdzAgEBE1nHayA0MCEREBIABgYgcwdpG9jEg\nEBERAAYEIiIKMCAQkTM4bWQXAwIREQEo9p7K5LFd4z24/1gv3pqqYWHXNO6YN441vRO2m0VECXCE\nQJntGu/B1393AUanuqAQjE514eu/uwC7xntsN41KiJvU7GFAoMzuP9aLUzr7rXRK5+D+Y72WWkRE\naTAgUGZvTdUSPU5EbmJA8Nyu8R4MHV2A5a/3Y+joglymcRZ2hZcdiHqcqJ3jj01z2sgSBgSPFTW3\nf8e8ccyV07Memyuncce8caPHIaJ8MSB4rKi5/TW9E7j7ohPo75qCQNHfNYW7LzrBLCNKjcXu7GDa\nqceKnNtf0zvBAEBUchwheIxz+0SUBAOCxzi3T0RJMCB4jHP7VGasa1Q8riF4jnP7RBQXRwhERASA\nAYGIHMYNasViQCAiZ3E/QrEYEIiICAAXlb3H+xQQUVwcIXiM9ykgHzD9tDgcIXisXS0jH0cJzaOh\n8+U0RIATp+dwZEQUEwOCx6p0n4LGaKgRAE9oDdD6c42REQAGBaI2OGXksSrVMgobDTUzVeW1iPtL\nENliJCCIyEMiMiYiByKeFxG5T0SOiMjLInK1ieNSeyZrGbl+IYwz6sk6MuKajD3cj1AMU1NG3wXw\nAIBHIp4fArAk+HMtgG8Hf1OOGtMjWbOMWqdjXJyCWdg1jdGp9m/nNCOj5nUJAXAaMut5n9dkqHqM\nBARVfUZEFrd5yVoAj6iqAnhWRPpEpF9VR00cn6KZqGUUtTj9D2N9uP9YrxMLtnfMG58VtFqlGRm1\nBkKNeJ2PazJUTUWtIQwAeLPp++HgsbOIyCYReV5Enn9nnGWa8xZnKij6gufOtElrZdcLZBp9c6Yz\nVXnttC7R4OOajGu4Y7kYzmUZqeo2ANsAYPnixVGdMjIg7lRQp+kYV6ZNTFd2jdfzV1zfc8rYMTup\n8kbDzVc+iq0HN9huhteKGiGMALik6ftFwWNkUdx7LoctTrfycdokXs9f8D8Tc3NvC8BFbcpfUQFh\nJ4DPB9lGnwBwgusH9sXdp9A8HRM1k66Ak9lHWcQJhEBxwTBuACdKy8iUkYh8D8ANAOaLyDCArwHo\nBgBVfRDALgBrABwB8D6AW00cl7KJmgoK6xk3pmNap5nOECezj7JozdIKyzICiltDqNJGwzDHH5sG\nBm23wm+msow+2+F5BfAlE8cic8Iyczpl4zRfJEenaoDnaZjN6xJhwbDIe1QnCeC+4jpCvrhTucLS\n3nN5Te8Edl82FtJXrvO1x2r7HtUmNxoShXEuy4iKlSUzp4o9Vpv3qDa10ZAoCgMCpZZmyimLqqRc\ntvt/2gxI5D8GBEqtyB5rlvIZZQokZSgTQv5iQKBMiuqxpr23g4sX2HYBqmr3sEiKmUb54qIypVJ0\n9dO0KZeu5e532lxW9dRSsosBwUN5X6xt7Ji9YE74BrGoxxtcu8B2ClBVuocFuYcBwTFZL+ZFXKxt\n9Lo1oqpV1OMNrl1gOwUoppaSTQwIDjFxMS/iYm2j130youpo1OMNrl1gOwUo23sdymDj/u22m+At\nLio7xMSCYtRFeXSqhqGjC4xk2tjYf5D2mK7l7sdJ1WVqKdnCgOAQEz3vdqWqG49nzbQpev9B1mPG\nvcAWkZ7qWoAiasaAULB2Fx0TPe/wO4cpTNYcsnFRy/uYRaancgRArmJAKFCni46JnnfYhXM0hzl/\nGxe1PI/J/H8iBoRCdbromOoFt144h44uqFzNoaRcS08lsoEBoUBxLjp59IJtzPmXTRUL9RG1Ytpp\ngWzlxDOVsbM06alF79amM5h6mg+OEApks6fOhcz2kk7XuVgjiSgrBoScdCpgxpRD9yQJmlyEJh8x\nIOSgU++RFwyzun//AuaO78ac6eM4XevDqd4hTJ53Ta7H5CI0+YhrCDlwrcKmz7p//wLOPbEDtenj\nEAC16eM498QOdP/+hVyP61qNJCITGBBywN5jceaO74bo5KzHRCcxd3x3rsd1rUYSkQmcMsoBUxiL\nM2f6eKLHTeF6EPmIASEHzPsvzulaH2ohF//Ttb7cj831IP8sHdmBVYfuQe/ECMZ7BrB32RYcHlhn\nu1mF4ZRRDmzm/VctN/5U7xBUumc9ptKNU71DllpEZbV0ZAdWv3Inzp8YhkBx/sQwVr9yJ5aO7LDd\ntMJwhJATG73HKubGT553Dd4HCs8yIv+sOnQPuqdnf066pyew6tA9xkYJro9AGBA8UtXc+MnzrmEA\noMx6J0YSPZ5UYwTSCDqNEQgAZ4ICp4w8wuwmovTGewYSPZ5UuxGIKxgQPMLceDdVbV2nrPYu24LJ\n2uzfzWStB3uXbTHy8/MegZjAgOAR5sa7x8R9sqkYhwfWYc9V9+JkzyIoBCd7FmHPVfcam87JewRi\nAtcQPMLcePdUdV2nrA4PrMttPn/vsi2z1hAAsyMQExgQclDEvXmjMDfeLVzXoYZGoGGWUYVUMfUz\nDhsF6FzAXevULM8RiAkMCIZxiuBsjQJ0jZpDtenjOPf4D6AnHofohNcBIs2u9XYjTJujT/IfA4Jh\nUVMBo1M1LH+9v5If4tACdJiGaP0cNCqUvg94FxRM3ngHQOlGn3mNDLcPbjTQOmplJCCIyM0AtgKo\nAfiOqn6j5fkbAPwYwP8GD/1QVb9u4tiuiZoiAASKcnyITYtTaK5RodS3gACYu/FO4+uw51x8L4WO\nDD0N/L7InHYqIjUA3wQwBOAKAJ8VkStCXvpzVR0M/ngZDIDw1M9WVbs3QtxCc3lXKC2DdiPM0ZIt\nUNsqTU7pmdiHsBLAEVV9Q1X/COD7ANYa+LnOarfRqLWwHaChP8PVD3EewgrQhSmiQqnrohebJfgT\n/oyLm95slSan9ExMGQ0AeLPp+2EA14a87joReRnACICvqurBsB8mIpsAbAKARfPmGWieWXGyiJqn\nCIaOLqhElknf+jMBbuvBDS3PbsTSkU/OpNud6r4Q3VPj6GrqPU7WerDnqn+clYGx+cpHzzrO8cf8\nOm+twhah21OcDgKFa9ORNkuTUzpFLSrvA3Cpqr4nImsAPA5gSdgLVXUbgG0AsHzx4vDutUVJs4h8\nvTfCWQEgNLyf0ZpuF6fq49mBBdi8/kyQ8DE4NC9C16eIwkYFOjNeON3yvEtrCqd6h2atIQBmSpP3\nra91fL9ROiYCwgiAS5q+XxQ8NkNVTzZ9vUtEviUi81X1HQPHL1TSjUY+7R5uBIE4AaCTtPnYs4LE\n4JlRhE/BoTHCjBpd9ndNY/dlYxh8vT/030etNRQtr9LkYR0FMsNEQHgOwBIR+TDqgeAWAJ9rfoGI\nLATwtqqqiKxEfe3iXQPHLlyajUZl3z08k+LnYK9s5uIwWP9r4/7t9hpjWKfR5RwAYekLLhUoY2ny\ncskcEFR1SkRuB/Ak6mmnD6nqQRG5LXj+QQDrAHxRRKYATAC4RVWdmw6Kw9cpoDBlzPVubnPZg0On\n0WVULlv7HLdy43RRvoysIajqLgC7Wh57sOnrBwA8YOJYtvk0BRSlb33Ni2F5IzhsvvLR0k4ptRtd\n9keMVvs9S1ig4nCncgplnwKKMhMIPOuBbT24ARgs/4ihVZVGqw0+dFRcxoBA3gaCVj6MGJpVYbTa\njNNF+WNAqLjtgxsr9yFrjBh8CAwujFZZcM8fLiUkOM232yD2ra+VctHYpK0HN6BvfW3WngpKpsg7\nwnG6KH8cIcTg2z0OqjgqiNKcturbGkMRiir3zumiYnCEEEOnCpRlUvVRQTvbBzd6fX7yGOUWdUc4\njg6KUdmAkOTD4cNtEDlFFJ+P5ymvqZ2oDZm+1eqqikoGhKQfjrK/6X3ZV1Ak30YLeY1yw8q9m059\n9en34LpKBoSkH44i3vR5YTDIZvvgRi8WnvMa5baWe+/vmsLdF50o5doaVXRRuSoF6hgMzGicw83r\ny5umGlWDq3EvhSzv6TxTXzk6KFYlA0IVCtQxGJi39eCG0gaF8PssuHcvheZ7MI/3LMLSkfNSVcU1\nLU65dh9UMiDcMW8cd49dgKmmGbMulGMKKA4Gg/w0NrUB5UpTbR3lungvhdZ7MJ8/MYzVr9wJAFYv\nvktHdmD1K3eie3rCqXbloZJrCAAgLR+G1u/jcm3DWpWDwdKRHbj16eX48hMLcOvTy7F0ZEeuxyvb\ndMaa3gnsvmwML350NOLGrnYz58Luwdw9PYFVh+6x1KK6VYfumQkGDS60Kw+VHCHcf6wXky0BYBKS\nuHfk4oY114JBUUNtW724RlAo02gBSDdtmreoey33ToyEPl6UqOPbblceKjlCMJVx4dqGNdd6rI2L\n9PkTwxDozEU6j5677V5cIxupLFzMnIu61/J4z0DBLYl3fNvtykMlA4KpfQUubVhz8WJU5EXahV5c\nmWojuZguWhv6NCZrs6dcJ2s92Ltsi6UW1e1dtsXJduWhkgEhTu8oztqAKxvWXF03KPIi7UovbuvB\nDTOBwXXNawq7LxuznkW3Vf8Fe666Fyd7FkEhONmzCHuuutf6wu3hgXVOtisPlVxD6LSvIO7agCs3\nKHExGAD1i/H5E8Ohj5u2d9mWWWsIgN1eXBlvymOzjHVjuvPwwDonL7Sutsu0SgYEoP2+grgVHPPY\nsJb0Q+lyFcg8L9Jhi9V7rrrXuVzxsiw620qQcG3dq1lV9h40E5fvdb988WL96Zbie3jLX++HhqSh\nChQvfnQ0t+O2fiiB+ogjam7X1amiZnl8qFozioB6oCnDMN7VwDB0dEHE/ZmnsPuysVyO6XowKOt7\n7Csrz3lBVVek+beVHSG0YyslL2ltedeDARB/qJ0kcLRbrHb9w7p9cKOTd2orOkHC5WAAxH+P+TaK\nYEAIYWttIMmH0uWpoqSS7iFwIaMoCxdv4VlUJ8j1QNAQ5z3m4w7mSmYZdWIrJS9J1lIZRgdxJU1P\ndSWjKKutBzc4s38h730JZbsfR5z3mO29L3lgQIhgIyUv7ofShQuISUl7/L7lhbsQGPLqBDX2ZZSt\nAxPnPVb2kWoYThk5JG7WUtk+XJ0kTU9tDMd9mrsFZk8lASh8Osl0Rd8yBoKGOO+xItOqi8Iso5Ip\n84csSpkzOvLmalZSO2WaGsrC1fcts4wqwsdgAPjb4zeh+eJaVHBIu0GtKoGgYfb7dhgqNXQ1rSGU\n8f3LgFAiLgYDU2l3VdkJmkXzBTevDKWkG9R87aTE1XjP+pJtxIBQEi6mmfqYdlcWed2oJ+5emJng\n5Nh70oYy74tpxYCQM5v1YfLm0wehzFqnahqL0q3ijCii9sKMTnVVbkooLp+yjRgQcmSyPoyLw3Kf\nPgg+iXyvDEYHi8a/+8Bvf47xiVNnPdfbM9dU87zjU7YRA0KOkpaiiOLidBHg1wehrF77zSj2HjiC\n8YlT6O2Zi1Uf/xguv7Q/8vWdOharPv4x7Nn3Kqamz+yH6arNwaqPf8xYm33jWqXdLLgxLUem6sO4\nODoA/NsgVjav/WYUe/a9OtOjH584hT37XsVrv0lfgPHyS/ux+uorZkYEvT1zsfrqK9oGmarz6X4J\nHCHkyMX71prkQrqob8XFkth74MisnjwATE2fxt4DRzJdwC+/tJ8BICFfsuQYEHJkokie6wt5Nj8I\nVc9yCpvrb/c4USdGpoxE5GYROSQiR0TkrpDnRUTuC55/WUSuNnFc17l431qf+FhcLImohV4uAFNa\nmUcIIlID8E0ANwEYBvCciOxU1VebXjYEYEnw51oA3w7+9l6W+jCuLia7oupZTlwAJtNMTBmtBHBE\nVd8AABH5PoC1AJoDwloAj2i9cNKzItInIv2qmt/txzzg6mKyK6qU5dQumyhJlhFROyYCwgCAN5u+\nH8bZvf+w1wwAOCsgiMgmAJsAYNG8eQaaR77yKd2vnUY2UWMk0MgmArgATGY5l3aqqttUdYWqrpjf\n22u7Odb4ds+DPPiU7tdOu2wiIpNMjBBGAFzS9P2i4LGkr6EmnC6Kx5d0v3aYTURFMREQngOwREQ+\njPpF/hYAn2t5zU4AtwfrC9cCOMH1g2qq8r6BtHp75rKcRAu+j/KROSCo6pSI3A7gSQA1AA+p6kER\nuS14/kEAuwCsAXAEwPsAbs16XJ/5ml1U9X0DaTGbaDZX3kc+BiUjG9NUdRfqF/3mxx5s+loBfMnE\nsai8WB01HWYTzebC+8iVoGQadyo7yNf1gzz3DfjYW2vGbKIzXNh/4kJQyoNzWUZV53N2UdT+gKz7\nBhq9tfMnhiHQmd7a0pEdmX4uuSmv91ESLgSlPDAgUGHyqo5a9RIWVeNClV0XglIeGBAc4+t0EZDf\nvgFfe2sUzoX9Jy4EpTxwDYEKlce+gSqVsKC6PN5HSdahXCj9ngcGBHJanA9pVUpYUH7SZA35uCmS\nU0YO8XlBOY24i8UuTCFQuXEdqo4jBIf4vH6QRpLUPh97a2n4nn5rSut56g2ZcgSqtw7FgEDO4mJx\nMr5uljIt7DwpBICe9dqqrUNxyoic5WtqX16iRlQ37/8ibn16OfdlBMLOk0CDoHBGFdehOEJwhOv3\nTrYh7WKx7WkTW8ePGjkJ/BotZD2/0SNMxcmeRZWebmNAIGelSe2zPW2S5vimAkhU+m2D6dIKNgKf\nid9vdJryIjx844vmGltCnDIipx0eWIeHb3wR9316DA/f+GLHD73tbJGkxzdZdiNss1QrU+svYe2+\n6aXN+Lv/XoovP7Eg8RTV0pEduPXp5R3/rYnfr6+bykxgQCCv2F6ITpqtYjKAzU6/DWdq/SWs3V36\nR5w7+X+JA1uSoGji98s05WicMnIA1w/MsblruX4BS5atYjqANdJvW6dWALO94DjtiztFlSS9OMnv\nt92UFtOUw3GEQF6xOR2w6tA9kJBgoJDI4+eVSZV3Lzhu++IEjiRBMe7vlxVw0+EIgbxis8ZMu+yV\nqOPnWXYjz15wWLvDxAkcSXr9cX+/vt6vIG8MCJb5ertMm2xNB7TLXolS1iJpre0+1X0huqfG0aWT\nM6+JG9iSBsU4v1/ba0llxYBAZEja3n5Z57Nb2502DTWPoMgKuOkwIBAZUtbevilZApvpoMgKuOkw\nIFjGgnblELf3W9bevm+qHpzTYkCwiOsH5WB79zOlw+CcHNNOiTqwvfuZqCgcIRC1qHqtfNvFAcke\nBgSLuH7gnqrXyuf0WLVxyoioSdlr5cctEheF02PVxoBA1KRTrXyXi6GZKNfADV3VxikjS5hh5KYy\n18o3Ua6BG7qqjSMES7h+4KYy18o30bsv8/+fsuMIgSojTvZMmTc0mejdl/n/T9kxIFAlJMmeKeuG\nJlPlGsr6/6fsOGVkAW+IU7wqZM/wTmCUFUcIVAlVyZ5p17vnhjPqhCMEqoS87kxWFryDGMWRKSCI\nyDwReUpEfhX8fWHE634tIq+IyH4ReT7LMcuO00V2VD17pkxTZlk311F6WUcIdwH4iaouAfCT4Pso\nf66qg6q6IuMxiRKr+vx6WabMOJKxK+sawloANwRfbwfwMwB/n/FnEuUibvaMj3PtZdlwxnsh25V1\nhHCxqo4GX78F4OKI1ymAPSLygohsavcDRWSTiDwvIs+/Mz6esXlu6Vtfs90E6sDXHmpZpszKMpLx\nVceAICJ7RORAyJ+1za9TVUVYSci661V1EMAQgC+JyCejjqeq21R1haqumN/bm+T/QpRZmebakyjL\nlFnVF/9t6zhlpKqro54TkbdFpF9VR0WkH8BYxM8YCf4eE5EfAVgJ4JmUbS4tlqtwn8891DJsOOO9\nkO3KOmW0E0AjbWYjgB+3vkBEzhOR3sbXAD4F4EDG45YOp4vKgT1Uu8oykvFV1kXlbwD4gYh8AcBR\nAH8LACLyIQDfUdU1qK8r/EhEGsf7d1X9r4zHJcoFe6jJ5LEAX4aRjK8yBQRVfRfAX4Q8/lsAa4Kv\n3wDwp1mO4wNOF5UDi7vFx7ur+YelK4hasIcaD1NE/cPSFUSUis8L8FXFEUIBWK6Cyi5sraAsm90o\nPo4QiKitqM16b1x0Uyk2u1F8DAg5Y7oplV3UWsFHfvdUohRRFq1zH6eMcsbsIiq7dmsFSepDMSPJ\nfRwh5IijA0rKxV60ic16vpYE8Q0DQo44OqAkXC2sZ6IwHjOSyoEBISccHVBSrvaiTZSTYEmQcuAa\nApEjonvRw/jyEwus7prOulmPJUHKgSOEnHC6iJKK6i0L4NQUUhosWlcOHCHkoG99DThouxWUhY27\npoX1oluVuTQES4K4jwEhBxwdlJutFMnWwnqAQkJex4VYygunjAxjmYrys7m4e3hgHR6+8UXc9+kx\njPcsCn0NF2IpLwwIRC1cSZEsy32QyR+cMjKIowM/FFW0rdM6Be/NQEVjQCBqUUSKZNx1Ci7EUpE4\nZWQIRwf+KCJF0tVNaFRtHCEYwDRT/+TdM3dlnYKoGUcIBjDNlJJiKQdyEQNCRpwqojSYQUQu4pRR\nBgwGlBYziMhFDAgpMRhQVswgItdwyoiIiAAwIKTC0QER+YgBISEGAyLyFQNCAgwGROQzLirHwEBA\nRFXAEUIHDAZEVBUMCG0wGBBRlTAghOhbX2MwIKLK4RpCk771NQCsTURE1cSAEOhbX2MgIKJKq3xA\nmAkELF9NRBVX2YAws0bAQEBEBCDjorKI/I2IHBSR0yKyos3rbhaRQyJyRETuynLMrLhgTEQULusI\n4QCAvwbwr1EvEJEagG8CuAnAMIDnRGSnqr6a8diJcERARNRepoCgqq8BgIi0e9lKAEdU9Y3gtd8H\nsBZArgGBi8RERMkUsYYwAODNpu+HAVwb9WIR2QRgU/DtHy7ctOlAqqNuAoAvpPqnCc0H8E4RB8qI\n7TSL7TSL7TRnWdp/2DEgiMgeAAtDntqiqj9Oe+AoqroNwLbg2M+rauTahAvK0EaA7TSN7TSL7TRH\nRJ5P+287BgRVXZ32hwdGAFzS9P2i4DEiInJIEaUrngOwREQ+LCJ/AuAWADsLOC4RESWQNe30MyIy\nDODPADwhIk8Gj39IRHYBgKpOAbgdwJMAXgPwA1WNm+uzLUv7ClKGNgJsp2lsp1lspzmp2yiqarIh\nRERUUqx2SkREABgQiIgo4ExASFAG49ci8oqI7M+SXpVWWcp1iMg8EXlKRH4V/H1hxOusnM9O50fq\n7guef1lEri6qbQnbeYOInAjO334RudtCGx8SkTERCd2z49C57NROF87lJSLyUxF5Nficbw55jfXz\nGbOdyc+nqjrxB8DlqG+o+BmAFW1e92sA811uJ4AagNcBfATAnwB4CcAVBbfznwHcFXx9F4B/cuV8\nxjk/ANYA2A1AAHwCwC8s/K7jtPMGAP9p473Y1IZPArgawIGI562fy5jtdOFc9gO4Ovi6F8BhR9+b\ncdqZ+Hw6M0JQ1ddU9ZDtdnQSs50z5TpU9Y8AGuU6irQWwPbg6+0A/qrg47cT5/ysBfCI1j0LoE9E\n+h1sp3Wq+gyAY21e4sK5jNNO61R1VFX3BV+Po54ZOdDyMuvnM2Y7E3MmICSgAPaIyAtBmQsXhZXr\nyPzLSuhiVR0Nvn4LwMURr7NxPuOcHxfOYdw2XBdMHewWkSuLaVoiLpzLuJw5lyKyGMByAL9oecqp\n89mmnUDC81no/RAMlcG4XlVHRGQBgKdE5JdBz8OYost1pNWunc3fqKqKSFR+ce7n03P7AFyqqu+J\nyBoAjwNYYrlNZeXMuRSRDwD4DwBfUdWTNtoQR4d2Jj6fhQYEzV4GA6o6Evw9JiI/Qn1Yb/QCZqCd\nhZTraNdOEXlbRPpVdTQYzo5F/Izcz2eIOOfHhZInHdvQ/CFU1V0i8i0Rma+qLhVAc+FcduTKuRSR\nbtQvso+p6g9DXuLE+ezUzjTns1RTRiJynoj0Nr4G8CnU78ngGhfKdewE0LgT0EYAZ41sLJ7POOdn\nJ4DPBxkdnwBwomkKrCgd2ykiC0Xq9d9FZCXqn6l3C25nJy6cy45cOJfB8f8NwGuqem/Ey6yfzzjt\nTHU+i14db7Nq/hnU5+L+AOBtAE8Gj38IwK7g64+gnunxEuq3utniYjv1TCbCYdSzVGy084MAfgLg\nVwD2AJjn0vkMOz8AbgNwW/C1oH5jpdcBvII2mWeW23l7cO5eAvAsgOsstPF7AEYBTAbvzS84ei47\ntdOFc3k96utqLwPYH/xZ49r5jNnOxOeTpSuIiAhAyaaMiIgoPwwIREQEgAGBiIgCDAhERASAAYGI\niAIMCEREBIABgYiIAv8Px8ZS71udVJIAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_decision_boundary(svc_gamma05, axis=[-1.5, 2.5, -1.0, 1.5])\n", + "plt.scatter(X[y==0,0], X[y==0,1])\n", + "plt.scatter(X[y==1,0], X[y==1,1])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Pipeline(steps=[('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('svc', SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n", + " decision_function_shape=None, degree=3, gamma=0.1, kernel='rbf',\n", + " max_iter=-1, probability=False, random_state=None, shrinking=True,\n", + " tol=0.001, verbose=False))])" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "svc_gamma01 = RBFKernelSVC(gamma=0.1)\n", + "svc_gamma01.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHrxJREFUeJzt3XGMHOWZ5/Hv4xknHrwDgxeIJzbEycWgsIkOB0RyIYq4\nPXYVOyf59uQ7keW0HFrJShTYjaKVLjqfWCkSd7n7I6sEsousHLsg3SWKnE2CLnYQTrJiDymrACFg\nw0IMG2/sm8QBZDOE8TJjP/dHV5uednV3VfdbVW9V/T7SyD3dNV2va6brqfd9nvctc3dERETWVN0A\nERGJgwKCiIgACggiIpJQQBAREUABQUREEgoIIiICBAoIZnafmZ0ws0MDXr/RzE6Z2ZPJ150h9isi\nIuFMB3qfvwLuAR4Yss3fuvu/DrQ/EREJLEgPwd0fAV4J8V4iIlKNUD2ELD5kZk8Bx4E/cffDaRuZ\n2W5gN8D6t7712q0bN5bYRBGRenvy6NGX3P3ScX62rIDwBHCFu79mZjuAbwFb0zZ0973AXoBtW7b4\nD/bsKamJIiL1d/Hu3UfH/dlSqozc/VV3fy15vB9Ya2aXlLFvERHJppSAYGYbzcySx9cn+325jH2L\niEg2QYaMzOyrwI3AJWZ2DPhTYC2Au98L7AI+aWYrwBJws2uZVRGRqAQJCO7+8RGv30OnLFVERCKl\nmcoiIgIoIIiISEIBQUREAAUEERFJKCCIiAiggCAiIgkFBBERARQQREQkoYAgIiKAAoKIiCQUEERE\nBFBAEBGRhAKCiIgACggiIpIo857K0mD7F2e4+5VZfrEyxcbpM9yxYZEds0tVN0tEclAPQSa2f3GG\nz/3qIhZWpnGMhZVpPveri9i/OFN100Ra5f5rbp3o5xUQZGJ3vzLLaV/9p3Ta13D3K7MVtUikfSYN\nBqCAIAH8YmUq1/MiElaIYAAKCI23f3GG7UcvY9sL82w/elkhwzgbp8/kel5EwgkVDEABodHKGtu/\nY8Mi6+zsqufW2Vnu2LAYdD8islrIYAAKCI1W1tj+jtkl7rz0FPPTKxjO/PQKd156SlVGIgWauyX8\nkKzKThuszLH9HbNLCgAiJfri4f8Q/D3VQ2gwje2LNFPooaIuBYQG09i+SPMUFQxAQ0aN1h3C0Qxi\nkWYoMhiAAkLjaWxfpBmKDgagISMRkeiVEQxAAUFEJGplBQNQQBARiVaZwQAUEEREolR2MAAllRtP\n9ykQqZe5W6YKmXSWhQJCg3XXMuouX9FdywhQUBCJUJXBABQQGm3YWkZNDAi9vaEL7SxmcOrsGvWM\npBaqDgaggNBobbpPQX9v6JRPgXdeU89IYhdDMAAllRutTWsZpfWGeoVa5bWM+0tIu8QSDCBQQDCz\n+8zshJkdGvC6mdmXzOyImT1lZu8PsV8ZLuRaRrGfCLP0eibtGene0VKEWIIBhBsy+ivgHuCBAa9v\nB7YmXx8A/iL5VwoUai2jOiSnN06fYWFl+J/zOD2j3ryEAWexVa83OScjxauitHSYIAHB3R8xsy1D\nNtkJPODuDvzQzObMbN7dF0LsXwYLsZbRoOT0fz4xx92vzEaRsL1jw+KqoNVvnJ5RfyD0Ads1MScj\nxYotEHSVlVTeBPy85/tjyXPnBQQz2w3sBti8YUMpjWuzLPMUBp/wLJreQn9vKESV0ai8RFcTczJS\nnFiDAURYZeTue4G9ANu2bBl0USYBZB0KGjUcE8uwSeiVXbNd+TsfnjkdbJ+jaKJhvcUcDKC8KqPj\nwOU9329OnpMKZb3nclpyul8Th02yXfkb/3dpXeFtASW16y72YADlBYQHgT9Iqo0+CJxS/qB6Wecp\n7Jhd4s5LTzE/vcKgkXSHKKuPJpElEEJ5wTBrAJe4zN0yVYtgAIGGjMzsq8CNwCVmdgz4U2AtgLvf\nC+wHdgBHgNeB20LsVyYzaCgo7cq4OxzTP8z0pnjyCaH05yXSqoygvBxCmyYaNsX919wKh6tuRXah\nqow+PuJ1Bz4VYl8STlplzqhqnN6T5MLKFDS8DLM3L5EWDMu8R3WeAC7Vm7tlqlbBADRTudV6h4IM\nZ356hTsvPTXyZL5jdokD7ziRcq3c0dQr1nGPVyghJxpKsWKafZxHdFVGUq5JKnPaeMVa5T2qQ000\nlOKcCwQ16xl0KSDI2MYZcppEW0ouh/0/qwxIMlxdewW9FBBkbGVesU6yfEadAkkdlgmR8zUhGIAC\ngkyorCvWce/tEOMJdliAats9LJqgbpVEwyipLGMpe/XTcUsuY6vdHzW5TKWl9VGn+QVZqYfQQEUP\nkVRx1X3RmrOcPHv+SfGiNePNoK7qBDuqB9DGRH0dNalX0Es9hMhMeuVdxvIGVVx1+4BVrQY93xXb\nTYJGBSiVlsavab2CXgoIEQlxMi/jZF3FVferA1YdHfR8V2wn2FEBquq5DjJYE4eI+mnIKCIhEoqD\nTsoLK1NsP3pZkGGkKoY1xt1nbLX7WUp1VVoan6ZUEY2igBCREFfew5aq7j4/6Zh/2fMPJt1n1hNs\nGeWpsQUoGa7uE83yUkAo2bCTTogr7/Q7hzkh1xyq4qRW9D7LTJSrB1APbekV9FJAKNGok06IK++0\nE+dCAWP+VZzUityn6v+lq229gl4KCCUaddIJdRXcf+LcfvQylTKOEFt5qlSjqeWkWSkglCjLSaeI\nq+AqxvzrRvX/7db06qGsVHZaoqpq4lXKONo45allz9aWYigYvEk9hBJVeaWuROZweYfrYlwjSfJp\nY9J4FAWEgoxawEwlh/HJEzSVhK6vNieNR1FAKMCoq0edMMJa++vHWbd4gDVnTnJ2ao7Ts9tZXn9t\noftUErqe1CsYTgGhALp6LM/aXz/OBaf2Yb4MwNSZk1xwah+vQ6FBQUnoelGvIBsFhALo6rE86xYP\nnAsGXebLrFs8UGhAUOVWPZxLGCsQZKKAUABdPZZnzZmTuZ4PRfmguGloaDwKCAXQ1WN5zk7NMZVy\n8j87NVf4vpUPis+kQ0NXHt/HDc/dxezScRZnNvHoVXt4ftOusI2MmOYhFKDKuv+21cafnt2O29pV\nz7mt5fTs9opaJFWZtFdw5fF93PT0Z7hw6RiGc+HSMW56+jNceXxfwFbGTT2EglRx9djG2vjl9dfy\nOpReZSTxCJUwvuG5u1h7ZvXnZO2ZJW547q5gvYTYeyAKCA3S1uqm5fXXKgC0UOjKodml47mez6vb\nA+kGnW4PBIgmKGjIqEFU3SRt0L1zWeik8eLMplzP5zWsBxILBYQGie3+wdLRtrxOUYoKBF2PXrWH\n5anVv5vlqRkevWpPkPcvugcSgoaMGkTVTfFpY14ntLLmEnSHbYoa41+c2cSFS8dSn4+FAkKDqDY+\nPm3N64RQxSqkz2/aVdh4/qNX7VmVQ4CwPZAQFBAKUMa9eQdRbXxclNfJZ+6WznFp4qSyonsgISgg\nBKYhgnRVLEAXA81az64Ns4uL7IGEoIAQmIYIzpe6AN3Jr+OnvoX5UqMDxDh5nWE9zCp7n0VY1SPQ\nekOVU0AIbNBQwMLKFNtemG/Ehziv1AXoOIN55xiUtUJpFULeeAeoXe9zUM9Qq4/GKUhAMLOPAl8E\npoCvuPvn+16/Efg28A/JU3/t7p8Lse/YDBoiAMOpx4c4tCwLzZWxQmlVQt14p/s47bUY/5bSeobr\nX9vHgS0f4fnD8Q6btNnE8xDMbAr4MrAduBr4uJldnbLp37r7NclXI4MBpN+bt1/vB7wNsi40V/QK\npXUwrIe5ULMEdVrPkJXlqCZiyWohJqZdDxxx9xfd/Q3ga8DOAO8brWETjfoXtgNPfY9YP8RFSFuA\nLk0ZK5TGbnCy2ZKv9FdinPQ2KMDHNBFLVgsREDYBP+/5/ljyXL8PmdlTZnbAzH5r0JuZ2W4ze8zM\nHntpMb4JVd0x3oWVaRw7NwTUHxQOvOMEP/5nC8xr9nBnAbqLdnFmag4HztoFeN+fnlYo7cjSw1zN\nOYsN/Fss29wtU+dmFC/ObE7dJqaJWLJaWUnlJ4Ar3P01M9sBfAvYmrahu+8F9gJs27Il/fK6Qnmr\niDR7uKN/Abq2lqGO0puE7gwRpfUK/Fx/4Wzf61XlFNKSxHWYiCWrhQgIx4HLe77fnDx3jru/2vN4\nv5n9uZld4u4vBdh/qfJONNLs4XRaoXSwbhJ6+9HLUgsU5qfPcOAdJ7jmhfnUnx+UawhtVMloHSZi\nyWohAsKPgK1m9k46geBm4Pd7NzCzjcAv3d3N7Ho6Q1UvB9h36caZaKTZwzKOUb3LNUDa4FKRK1au\nmjyWoWQ09olYstrEAcHdV8zsduAhOmWn97n7YTP7RPL6vcAu4JNmtgIsATe7e3TDQVloCEjKMqp3\nOSjTkCcDkZVuVt8OQXII7r4f2N/33L09j+8B7gmxr6ppCEjKNKx3OT+gtzqokGEcVSwwJ9XRTOUx\naAhIYlBUb7UNawpJOgUEkZoK1Vs9b4VRDQu1lgKCSI2N21vtBgGYfKnpZ/9xgUcPHWFx6TSzM+u4\n4b3v5j1XpFdASdwUEDJq2iqT0j4hg0DXs/+4wMEnnmHlTCeVvbh0moNPPAOgoFBDCggZ6B4HUld5\ny0TzevTQkXPBoGvlzFkePXREAaGGFBAy0D0OpG7SykSLGNpZXDqd63mJW2sDQp4hIN0GUepgWIlo\nUUM7szPrUk/+szPrxn5PqU4rA0LeISDdBlFilXWeQFFDOze8992rAg3A9NQabnjvu8d+T6lOKwOC\nFqiTupk0IVzU0E43mKjKqBlaGRC0QJ3UxXlzBMY0aGjHDP7sGw9PdCJ/zxXzCgAN0cqAoAXqJFbn\n9QQCVQalDe0AdFcUi6Vc9Mrj+6JcHTXWdoXWyoBwx4ZF7jxxESs960JOoyEgqcaqPEBBs4T7h3bM\n3gwGXVWXi155fN+q+ydcuHSMm57+DEClJ99Y21WEVgYEAOu7sUj/91lpwlo86nTTnSrWC+od2vmz\nbzycuk2V5aI3PHfXqpvpAKw9s8QNz91V6Yk31nYVoZUB4e5XZlnuCwDLWO55BZqwNlpZJ+m1v36c\nC07tO3dT96kzJ7ng1D5eh2iCQhk9gaxiLBcddK/lqu/BHGu7itDKgBBqXoEmrA1X5kl63eKBc/vp\nMl9m3eKBygJCzKuGxlguujiziQuXjqU+X6VY21WEVgaEUPMKNGFtuDJP0mvOnMz1fEgDS0IjXjU0\nxnLRWO/BHGu7itDKgJBlXkGW3IAmrA1X5kn67NQcUynve3ZqLvi+oJiF4soWW7lorPdgjrVdRWhl\nQBg1ryBrbkAT1oYr8yR9enb7quEpALe1nJ7dHuT9iyoHjUkMy1jHeg/mWNsVWisDAgyfV5A1N1DE\nhLUmVS0VeZJOS1a/ftGuoAnsmJLARdMy1udry9yDXq0NCMPkyQ2EnLDWtKql5fXX8joErzIamKy+\naBeLG//L2O8bcxK4aFrGerU2zT3opYCQoqrcQBOrlpbXX5spAOQpTw2ZrG5TL2AYLWO9Wta5B03r\nRSggpKgqN9DWqqW85amTJKvb3AsYJsZ5CVXKMvegib0IBYQUVS1m19aqpbxX/FmS1XUsBa1SjPMS\nqpRl7kETZzArIAxQxWJ2ba1aynvFPyhZPbX9Y8xdHWZ10LaJcV5ClbLMPWjiDGYFhIi0dZntvOWp\nvcnqqTMn4cKL+e67/ivP+y71ACYQ27yEKmWZe9DEGcwKCJFp4zLbectTO4ngbHcKExnXqLkHTZzB\nrIAglRtVnqpEcLlimKBWB6t7Ecdwm2I6ySH0vl4nCggykVCrmfaXp6octBqaoJZP96TflGojBQQZ\nW8jVTNULiIMmqOXXpGojBYSCNWkpin7jTBBTOWjcNEEtvyZVGykgFKhpS1H0y1MuGupm8VIsTVDL\nr0nVRgoIBWriUhS9hpWLtmF10BiETgBrglp+Tao2UkAoUNOXokgrF12emuHg+/4bzx+u19hpHRWR\nANYEtfyadL8EBYQCNX0piuX11/LdLR+p9IPQtMXF8igqAawJavk15X4JCggFaupSFKtKQqmutK6J\ni4vloQSwhBYkIJjZR4EvAlPAV9z9832vW/L6DuB14D+6+xMh9h2zpixFEWtJaJPK/cahBLCENnFA\nMLMp4MvA7wDHgB+Z2YPu/kzPZtuBrcnXB4C/SP5tvDouRVGXhHCTyv3GoQSwhBaih3A9cMTdXwQw\ns68BO4HegLATeMDdHfihmc2Z2by7LwTYvwSwqiw00gDQr0nlfqMMqyZSAlhCCREQNgE/7/n+GOdf\n/adtswk4LyCY2W5gN8DmDRsCNE+GqfP8gCaV+w0zqppIAUBCiS6p7O57gb0A27Zs8Yqb00hNWSeo\nSeV+w2g5CSlLiIBwHLi85/vNyXN5t5GCxJoUDqEp5X7DqJpIyhIiIPwI2Gpm76Rzkr8Z+P2+bR4E\nbk/yCx8ATil/ULxzPYGIegFtnjcwLlUTnU9/R8WYOCC4+4qZ3Q48RKfs9D53P2xmn0hevxfYT6fk\n9AidstPbJt2vnC/2fEDb5w2MS9VEq8Xyd9TEoBQkh+Du++mc9Hufu7fnsQOfCrEvWa1O1UFtnzcw\nLlUTrRbD31EsQSm06JLKMlqdgkCvIucNNPFqrZeqid4Uw/yTGIJSERQQaiTGnEAeRc0baOrVmqSL\nYf5JDEGpCGtGbyJVu/+aW89bP6iOHr1qD8tTM6ueCzFvYNjVmjRPUX9HeQwKPnWfFKkeQqSaWCpa\n1LyBpl6tSboY5p80dVKkAkJk6j4sNEoR8wZiGEKQchXxd5QnDxVDUCqCAkLFmtgTCCnLh7SpV2tS\nnnHyUE2cFKmAUIG6VgmVLeuHtKlXa1KeplYN5aWAUDL1CLLL8yFt4tXaOJpefhtK/3GaTRlyhPbl\noRQQStCUxeTKpmRxPiq/zSbtODkGnL+WZtvyUCo7LdDcLVONKBetSlNL+4oyqEf10Sc/yW3f38aV\nx/dV1LK4pB0nw5Og8KY25qHUQyhA0yuFyjJusrjqYZOq9j+o52Q0q7cw6fEd3MN0Xp3Z3OrhNgWE\ngNQbCGucZHHVwybj7D9UABlUftsVOklaReAL8fsdXKa8mb/87R+Ha2wNWWfduTht27LFf7An3i6b\nEsTxue3721I/7K+W9GHPu//+Exx0ekEH3/eF3CfXtPfq5xhf+tiJXO+bdV8r9hbemF7PzPLJ3AEi\na3AJ8fsNecxj9Onr3/q4u183zs+qhzCG2JeZbrOqE9F5q1VCljuu7lEd6xsR7wiVf0lr97S/wfTy\nG0C+K/c8V/0hfr8qUx5MASEHBYL4VTlruZO0zVetEjqAdctvB10Fh0qSZmlf1sCWJyjm+f0O63Wo\nTDmdAkIGShLXR5Wzlm947i4sJRg4NnD/RQWwoq+CR+UrurIEjjxBMevvt+pcUl0pIAyhHEH9VDkc\nMKx6ZdD+iwxgRV4Fp7U7TZbAlicoZv39aubxeBQQUpwLBOoR1FJVwwHDqlcGqet4dn+7T6+9mLUr\ni0z78rltsga2vEExy++36lxSXSkg9NDQkExi3Kv9uo5n97d73DLUIoKiVsAdT+sDgoaFJJS6Xu2H\nMklgCx0UtQLueFobEFQxJHlkvfqt69V+07Q9OI+rlQFBvQLJQxUr9aTgnF+rAoJyBDIOVaxIW7Qi\nIGiNIcmj7WvlV704oFSn0QFBgUDyavta+Roea7dG3g9B9yGQcdV9rfwrj+/jtu9v44++c9lY90AY\nNjwmzdeoHoImlMmk6rxWfoire03oardGBAQFAgmlzmvlh0h+a0JXu9V6yKg7NKQSUgnl0av2sDw1\ns+q5WIeH+oW4uq/z/18mV8segnoEMo4s1TN1ntAU4uq+zv9/mVytAoICgYwrz/h6XSc0hVquoa7/\nf5lcbQLC/dfcqkAgY2vD5DJd3cukog8IKh+VENpSPTPs6l4TzmSUqJPKL8/8ZtVNkIYYNI7eluqZ\n7pDZhUvHMPzckFneeQrSbBMFBDPbYGYPm9lPk38vHrDdz8zsaTN70swem2SfIuNoe/VMnSacTTq5\nTsY3aQ/hs8D33H0r8L3k+0H+pbtf4+7XTbhPkdye37SLg+/7Aq/ObMYxXp3ZzMH3faE1QyZ1GTJT\nT6Zak+YQdgI3Jo/vB/4G+E8TvqdIIbJWzzRxrL0uE87akPyP2aQ9hLe5+0Ly+BfA2wZs58BBM3vc\nzHYPe0Mz221mj5nZY6+dfGnC5onk09Qr1LoMmdWlJ9NUIwOCmR00s0MpXzt7t3N3J21JyI4Pu/s1\nwHbgU2b2kUH7c/e97n6du1/3G3OX5Pm/iEysTmPtedRlyKztyf+qjRwycvebBr1mZr80s3l3XzCz\neeDEgPc4nvx7wsy+CVwPPDJmm0UK0+Qr1DpMONO9kKs16ZDRg0B3osCtwLf7NzCz9WY2230M/C5w\naML9ihRCV6jVqktPpqkmTSp/Hvi6mf0hcBT49wBm9nbgK+6+g05e4Ztm1t3f/3b37064X5FC6Ao1\nnyIS8HXoyTTVRAHB3V8G/lXK8/8P2JE8fhH455PsR6QsWv4hO91drXmiX7pCpGy6Qs1GJaLNE/XS\nFSISryYn4NtKPQQRGSktV1CXyW6SnXoIIjLUoMl6L176O7WY7CbZKSCIyFCDcgXv+tXDuUpEtWhd\n/DRkJCJDDcsV5FkfShVJ8VMPQSQiMV5Fh5is19QlQZpGAUEkErEurBdiYTxVJNWDAoJIJGK9ig6x\nnISWBKkH5RBEIjH4KvoYf/SdyyqdNT3pZD0tCVIP6iGIRGLQ1bJBVENI49CidfWgHoJIiirumpZ2\nFd2vzktDaEmQ+CkgiPSpqkSyf2E9cCxlOyVipSgaMhLpU2Vy9/lNu/jL3/4xX/rYCRZnNqduo0Ss\nFEUBQaRPLCWSdbkPsjSHhoxE+pS1aNuoPIXuzSBlU0AQ6VNGiWTWPIUSsVImDRmJ9CmjRDLWSWjS\nbuohiKQo+so8ljyFSC/1EEQqoKUcJEYKCCIVUAWRxEhDRiIVUAWRxEgBQaQiqiCS2GjISEREAAUE\nERFJKCCIiAiggCAiIgkFBBERARQQREQkoYAgIiKAAoKIiCQUEEREBFBAEBGRhAKCiIgACggiIpKY\nKCCY2b8zs8NmdtbMrhuy3UfN7DkzO2Jmn51knyIiUoxJewiHgH8LPDJoAzObAr4MbAeuBj5uZldP\nuF8REQlsouWv3f1ZADMbttn1wBF3fzHZ9mvATuCZSfYtIiJhlXE/hE3Az3u+PwZ8YNDGZrYb2J18\n+0+fvv6thwpsWwiXAC9V3YgM1M6w1M6w1M5wrhr3B0cGBDM7CGxMeWmPu3973B0P4u57gb3Jvh9z\n94G5iRjUoY2gdoamdoaldoZjZo+N+7MjA4K73zTumyeOA5f3fL85eU5ERCJSRtnpj4CtZvZOM3sL\ncDPwYAn7FRGRHCYtO/09MzsG/AvgO2b2UPL8281sP4C7rwC3Aw8BzwJfd/fDGXexd5L2laQObQS1\nMzS1Myy1M5yx22juHrIhIiJSU5qpLCIigAKCiIgkogkIOZbB+JmZPW1mT05SXjWuuizXYWYbzOxh\nM/tp8u/FA7ar5HiOOj7W8aXk9afM7P1ltS1nO280s1PJ8XvSzO6soI33mdkJM0udsxPRsRzVzhiO\n5eVm9gMzeyb5nP9xyjaVH8+M7cx/PN09ii/gPXQmVPwNcN2Q7X4GXBJzO4Ep4AXgXcBbgJ8AV5fc\nzv8BfDZ5/Fngv8dyPLMcH2AHcAAw4IPA31Xwu87SzhuB/1PF32JPGz4CvB84NOD1yo9lxnbGcCzn\ngfcnj2eB5yP928zSztzHM5oegrs/6+7PVd2OUTK289xyHe7+BtBdrqNMO4H7k8f3A/+m5P0Pk+X4\n7AQe8I4fAnNmNh9hOyvn7o8ArwzZJIZjmaWdlXP3BXd/Inm8SKcyclPfZpUfz4ztzC2agJCDAwfN\n7PFkmYsYpS3XMfEvK6e3uftC8vgXwNsGbFfF8cxyfGI4hlnb8KFk6OCAmf1WOU3LJYZjmVU0x9LM\ntgDbgL/reymq4zmknZDzeJaxltE5gZbB+LC7Hzezy4CHzezvkyuPYMpermNcw9rZ+427u5kNqi8u\n/Hg23BPAFe7+mpntAL4FbK24TXUVzbE0s98AvgF82t1fraINWYxoZ+7jWWpA8MmXwcDdjyf/njCz\nb9Lp1gc9gQVoZynLdQxrp5n90szm3X0h6c6eGPAehR/PFFmOTwxLnoxsQ++H0N33m9mfm9kl7h7T\nAmgxHMuRYjmWZraWzkn2f7n7X6dsEsXxHNXOcY5nrYaMzGy9mc12HwO/S+eeDLGJYbmOB4Fbk8e3\nAuf1bCo8nlmOz4PAHyQVHR8ETvUMgZVlZDvNbKNZZ/13M7uezmfq5ZLbOUoMx3KkGI5lsv//CTzr\n7l8YsFnlxzNLO8c6nmVnx4dkzX+PzljcPwG/BB5Knn87sD95/C46lR4/AQ7TGcKJrp3+ZiXC83Sq\nVKpo528C3wN+ChwENsR0PNOOD/AJ4BPJY6NzY6UXgKcZUnlWcTtvT47dT4AfAh+qoI1fBRaA5eRv\n8w8jPZaj2hnDsfwwnbzaU8CTydeO2I5nxnbmPp5aukJERICaDRmJiEhxFBBERARQQBARkYQCgoiI\nAAoIIiKSUEAQERFAAUFERBL/HxCWYgISUN0KAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_decision_boundary(svc_gamma01, axis=[-1.5, 2.5, -1.0, 1.5])\n", + "plt.scatter(X[y==0,0], X[y==0,1])\n", + "plt.scatter(X[y==1,0], X[y==1,1])\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/11-SVM/09-SVM-Regressor/09-SVM-Regressor.ipynb b/11-SVM/09-SVM-Regressor/09-SVM-Regressor.ipynb new file mode 100644 index 0000000..8cb4b0a --- /dev/null +++ b/11-SVM/09-SVM-Regressor/09-SVM-Regressor.ipynb @@ -0,0 +1,135 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## SVM 思想解决回归问题" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from sklearn import datasets\n", + "\n", + "boston = datasets.load_boston()\n", + "X = boston.data\n", + "y = boston.target" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from sklearn.svm import LinearSVR\n", + "from sklearn.svm import SVR\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.pipeline import Pipeline\n", + "\n", + "def StandardLinearSVR(epsilon=0.1):\n", + " return Pipeline([\n", + " ('std_scaler', StandardScaler()),\n", + " ('linearSVR', LinearSVR(epsilon=epsilon))\n", + " ])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Pipeline(steps=[('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('linearSVR', LinearSVR(C=1.0, dual=True, epsilon=0.1, fit_intercept=True,\n", + " intercept_scaling=1.0, loss='epsilon_insensitive', max_iter=1000,\n", + " random_state=None, tol=0.0001, verbose=0))])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "svr = StandardLinearSVR()\n", + "svr.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.63618523213237332" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "svr.score(X_test, y_test)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/11-SVM/Chapter-11.key b/11-SVM/Chapter-11.key index faa1448..f8c7835 100644 Binary files a/11-SVM/Chapter-11.key and b/11-SVM/Chapter-11.key differ