-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDelta_asym_sweep.py
266 lines (198 loc) · 9.4 KB
/
Delta_asym_sweep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# This script uses pymeasure to perform Delta measurements with strictly
# positive current or strictly negative current. This allows comparison
# of resistance values to extract polarity-dependent properties such as
# spin-torque effects.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
from time import sleep, time
from datetime import datetime
import ngcmeas.current_voltage as cv
from pymeasure.adapters import VISAAdapter
from pymeasure.experiment import Procedure, Results, Worker
from pymeasure.experiment import IntegerParameter, FloatParameter, Parameter
import ngcmeas.current_voltage as cv
import ngcmeas.switch_matrix as sm
import MultiVu_talk_ngc as mv
from PythonControl.parse_inputs import inputs
class DeltaPolarity(Procedure):
def __init__(self, host, port):
self.host = host
self.port = port
super().__init__()
iterations = IntegerParameter('Measurement Number')
angle = FloatParameter('Probe Angle', units='deg', default=0.)
start_temp = FloatParameter('Starting Temperature', units='K', default=300.)
end_temp = FloatParameter('Ending Temperature', units='K', default=300.)
temp_points = IntegerParameter('Number of Temp points', default = 50)
temp_ramp = FloatParameter('Temperature Ramp Rate', units='K/min', default=3.)
start_field = FloatParameter('Starting Field', units='Oe', default=0.)
end_field = FloatParameter('Ending Field', units='Oe', default=0.)
field_points = IntegerParameter('Number of Field points', default = 50)
field_ramp = FloatParameter('Field Ramp Rate', units='Oe/s', default=50.)
I_pos_max = FloatParameter('Positive Current Max', units='A', default=100.e-6)
I_pos_min = FloatParameter('Positive Current Min', units='A', default=0.e-6)
I_neg_max = FloatParameter('Negative Current Max', units='A', default=100.e-6)
I_neg_min = FloatParameter('Negative Current Min', units='A', default=0.e-6)
delay = FloatParameter('Delay', units='s', default=1.e-3)
nplc = IntegerParameter('Num Power Line Cycles', default=3)
swpct1 = IntegerParameter('Sweep Count 1', default=10) # num delta readings
swpct2 = IntegerParameter('Sweep Count 2', default=1) # num sweeps
swpct3 = IntegerParameter('Digital Filter Count', default=10) # filter number
switch_config = Parameter('I+, I-, V+, V-', default=[1,2,3,4])
rvng = FloatParameter('Voltmeter Range', default=1.e1)
date = Parameter('Date Time', default='')
num_meas = IntegerParameter('Number of IV sweeps to take at each point', default=1)
#DATA_COLUMNS = ['Time', 'Temperature', '\g(m)\-(0)H', 'V+ 1', 'V+ 1 std', 'V+ 2', \
# 'V+ 2 std', 'V+ 3', 'V+ 3 std', 'V- 1', 'V- 1 std', 'V- 2',\
# 'V- 2 std', 'V- 3', 'V- 3 std']
DATA_COLUMNS = ['Time', 'Temperature', '\g(m)\-(0)H', 'Angle', 'V+ 1', 'V+ 1 std',\
'V- 1', 'V- 1 std']
def startup(self):
print('Starting Up')
KE6221adapter = VISAAdapter("GPIB0::12")
KE7001adapter = VISAAdapter("GPIB0::7")
print('adapters done')
self.currentsource = cv.myKeithley6221(KE6221adapter)
self.switch = sm.Keithley7001(KE7001adapter, "SwitchMatrix")
print('instruments mapped')
self.currentsource.reset()
#self.currentsource.arm_preloop_delta(self.start_I, \
# self.stop_I, self.step_I, self.delta_I, self.delay, \
# self.nplc)
self.switch.open_all()
self.starttime = time()
print('Done Startup')
self.switch.clos_custom(*self.switch_config)
# Generate Temp list for measurement
self.temp_to_meas = np.linspace(self.start_temp, self.end_temp, self.temp_points)
self.field_to_meas = np.linspace(self.start_field, self.end_field, self.field_points)
#print(self.field_to_meas)
sleep(0.1)
def execute(self):
self.stable_field = r'"Holding (Driven)"'
self.stable_temp = r'"Stable"'
#for tmpmes in self.temp_to_meas:
for fldmes in self.field_to_meas:
'''
# For changing temp
mv.set_temp(self.host, self.port, tmpmes, self.temp_ramp)
print('going to '+str(tmpmes)+'K now')
'''
# For changing field
mv.set_field(self.host, self.port, fldmes, self.field_ramp)
print('going to '+str(fldmes)+'Oe now')
sleep(1.8)
field_stable = False
temp_stable = False
#temp_stable = True
# Wait for Temperature and Field to stabilize
while not (field_stable and temp_stable):
b = mv.query_field(self.host, self.port)
t = mv.query_temp(self.host, self.port)
field_stable = b[1] == self.stable_field
temp_stable = t[1] == self.stable_temp
sleep(0.1)
self.temp = t[0]
self.field = b[0]
print('Out of while loop and field ', b[0], ' temp ', t[0])
tim = time() - self.starttime
for i in range(self.num_meas):
print(i, 'th measurement')
voltp1, voltp1std = self.run_one_delta(polarity = 'positive')
voltn1, voltn1std = self.run_one_delta(polarity = 'negative')
'''
voltp2, voltp2std = self.run_one_delta(polarity = 'positive')
voltn2, voltn2std = self.run_one_delta(polarity = 'negative')
voltp3, voltp3std = self.run_one_delta(polarity = 'positive')
voltn3, voltn3std = self.run_one_delta(polarity = 'negative')
'''
self.emit('results', {
'Time': tim,\
'Temperature': t[0],\
'\g(m)\-(0)H': b[0],\
'Angle': self.angle,\
'V+ 1': voltp1, \
'V+ 1 std': voltp1std, \
#'V+ 2': voltp2, \
#'V+ 2 std': voltp2std, \
#'V+ 3': voltp3, \
#'V+ 3 std': voltp3std, \
'V- 1': voltn1, \
'V- 1 std': voltn1std \
#'V- 2': voltn2, \
#'V- 2 std': voltn2std, \
#'V- 3': voltn3, \
#'V- 3 std': voltn3std \
})
print('Done Emitting')
self.currentsource.write("SOUR:SWE:ABOR")
print('Done with Temps')
def run_one_delta(self, polarity = 'positive'):
measstart = time()
if polarity == 'positive':
print('in run one delta, positive')
#print(self.currentsource.ask('syst:err?'))
self.currentsource.arm_delta(self.I_pos_max, \
self.I_pos_min, self.delay, self.swpct1, self.swpct2,\
self.swpct3, self.nplc, self.rvng, self.swpct1)
sleep(0.15)
print('armed')
if polarity == 'negative':
print('in run one delta, negative')
self.currentsource.arm_delta(self.I_neg_max, \
self.I_neg_min, self.delay, self.swpct1, self.swpct2,\
self.swpct3, self.nplc, self.rvng, self.swpct1)
sleep(0.1)
volt, voltstd = self.currentsource.inloop_delta()
self.currentsource.write_IV_file(self.temp, self.field, self.I_pos_max,
self.angle, polarity)
meas_time = time() - measstart
print('Delta time to run ', meas_time)
return volt, voltstd
def main():
host = "128.104.184.130"
port = 5000
now = datetime.now()
# Start editing
directory = (r'C:\Users\maglab\Documents\Python Scripts\data\BPBO'
r'\B028\220820\300K_2.5mA_0')
os.chdir(directory)
data_filename = 'Delta_asym_2.5mA_200K_8kOe_90deg_B028_0.csv'
'''
setpoint = 10000 # max B in Oe
ramprate = 100 # field ramp in Oe/sec
'''
procedure = DeltaPolarity(host, port)
procedure.angle = 90. # Angle of the probe
procedure.iterations = 1
procedure.start_temp = 200. # Kelvin
procedure.end_temp = 200. # Kelvin
procedure.temp_points = 2 # number of temp points
procedure.temp_ramp = 5 # Kelvin/min
procedure.start_field = 8000. # Oe
procedure.end_field = 2000. # Oe
procedure.field_points = 61 # number of field points
procedure.field_ramp = 40. # Oe/sec
procedure.I_pos_max = 2.5e-3 # Amps this should not be zero.
procedure.I_pos_min = 0.e-3 # Amps this should be zero.
procedure.I_neg_max = -2.5e-3 # Amps this should not be zero, and should be <0.
procedure.I_neg_min = 0.e-3 # Amps this should be zero.
procedure.delay = 1.e-3 # seconds
procedure.nplc = 1 # number power line cycles, select either 1 or 5
procedure.swpct1 = 120 # number of delta points
procedure.swpct2 = 1 # something?
procedure.swpct3 = 1 # filter
procedure.rvng = 10.e0 # Voltmeter range
procedure.switch_config = [5, 1, 4, 8] # Switch configuration I+,I-, V+,V-
procedure.date = now.strftime("%m/%d/%Y, %H:%M:%S")
procedure.num_meas = 2 # number of measurements to take at each temp/field
# use Pymeasure to run the experiment
results = Results(procedure, data_filename)
worker = Worker(results)
print('Starting worker to run Measurement')
worker.start()
worker.join(timeout=120) # wait at most 2 min
if __name__ == "__main__":
main()