forked from swimmer008/Ag-Productivity-US-EU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path02h_TFP for US_comparison.R
509 lines (415 loc) · 24.4 KB
/
02h_TFP for US_comparison.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# ------------------------------------------ #
# #
# This program compares TFP growth across #
# all considered indices for the US state- #
# level data #
# #
# ------------------------------------------ #
library(dplyr)
library(ggpubr) ## for ggarrange
library(tikzDevice) #to save ggplot object in latex format
library(kableExtra) # to convert data frames to Latex
library(reshape)
# Set path to Latex compiler if figures should be stored in Latex format
options("tikzLatex"='C:/Program Files/MiKTeX/miktex/bin/x64/pdflatex.exe')
#----------------------------------------------------#
# comparison 1: Table for Avg. annual rate of change #
#----------------------------------------------------#
# Load Lowe VRS
load("r_output/Summary_lowe_US_vrs.Rda")
# Load Lowe CRS
load("r_output/Summary_lowe_US_crs.Rda")
# Load A-DEA VRS
load("r_output/Summary_adea_US_vrs.Rda")
# Load A-DEA CRS
load("r_output/Summary_adea_US_crs.Rda")
# Load M-SFA VRS
load("R_output/Summary_msfa_US_vrs.Rda")
# Load M-SFA CRS
load("R_output/Summary_msfa_US_crs.Rda")
# Load Global Malmquist
load("R_output/Summary_globmalm_US.Rda")
# Create data frame for table
Summary_US <- data.frame(matrix(ncol = 4, nrow = 7))
colnames(Summary_US) <- c("index",
"TFP", "TC", "TFPE")
Summary_US$index <- c("Lowe (VRS)", "Lowe (CRS)",
"A-DEA (VRS)", "A-DEA (CRS)",
"M-SFA (VRS)", "M-SFA (CRS)",
"Global Malmquist")
Summary_US$TFP <- c(Summary_lowe_US_vrs$TFP, Summary_lowe_US_crs$TFP,
Summary_adea_US_vrs$TFP, Summary_adea_US_crs$TFP,
Summary_msfa_US_vrs$TFP, Summary_msfa_US_crs$TFP,
Summary_globmalm_US$TFP)
Summary_US$TC <- c(Summary_lowe_US_vrs$TC, Summary_lowe_US_crs$TC,
Summary_adea_US_vrs$TC, Summary_adea_US_crs$TC,
Summary_msfa_US_vrs$TC, Summary_msfa_US_crs$TC,
Summary_globmalm_US$TC)
Summary_US$TFPE <- c(Summary_lowe_US_vrs$TFPE, Summary_lowe_US_crs$TFPE,
Summary_adea_US_vrs$TFPE, Summary_adea_US_crs$TFPE,
Summary_msfa_US_vrs$TFPE, Summary_msfa_US_crs$TFPE,
Summary_globmalm_US$TFPE)
Summary_US[,-1] <- log(Summary_US[,-1])/(2004-1960)*100
# Write Table: Average annual TFP growth rates in US agriculture (1960-2004) from different indices
# Set global option to produce latex output
options(knitr.table.format = "latex", knitr.kable.NA = '')
# Create table
Tab_Summary_US <- kable(Summary_US, booktabs = T,
digits = 2,
row.names = FALSE,
escape = FALSE,
linesep = "",
caption = "Average annual growth rates (\\%) in TFP and components in US agriculture (1960--2004) based on different indices.",
label = "Tab_Summary_US",
col.names = c('TFP index',
'TFP', 'Technical change', "Efficiency change")) %>%
footnote(general = "TFP is total factor productivity. VRS and CRS indicate variable returns to scale and constrant returns to scale, respectively.",
footnote_as_chunk = T,
threeparttable = T,
general_title = "Notes:",
escape=F) %>%
kable_styling(latex_options = c("HOLD_position"))
# Print Latex file
writeLines(Tab_Summary_US, "Tables/Tab_Summary_US.tex")
#----------------------------------------#
# Comparison 2: Kernel density estimator #
#----------------------------------------#
# Load results
load("R_output/Lowe.level_vrs.Rda")
load("R_output/Lowe.level_crs.Rda")
load("R_output/ADEA.level_vrs.Rda")
load("R_output/ADEA.level_crs.Rda")
load("R_output/MSFA.level_vrs.Rda")
load("R_output/MSFA.level_crs.Rda")
load("R_output/GlobMalm.levels.Rda")
# LOWE VRS
# First: Compare every level to the state's *own* 1960 level
idstates <- unique(Lowe.level_vrs$state)
Lowe.cum_vrs <- list()
for (i in idstates) {
Lowe.cum_vrs[[which(i==idstates)]] <- cbind(state = i, year=1960:2004,
sweep(Lowe.level_vrs[Lowe.level_vrs$state==i,-c(1:2)],MARGIN = 2,
STATS = as.numeric(Lowe.level_vrs[Lowe.level_vrs$state==i,-c(1:2)][1,]),FUN = "/")) # for myself: 2 refers to column
}
Lowe.cum_vrs <- do.call(rbind, Lowe.cum_vrs) #turns the list into a data frame
# Second: Keep only TFP and rename it
Lowe.cum_vrs = subset(Lowe.cum_vrs, select = c("year", "TFP") )
Lowe.cum_vrs <- dplyr::rename(Lowe.cum_vrs, "TFP_lowe_vrs" = "TFP")
# Third: Delete first year
Lowe.cum_vrs <- Lowe.cum_vrs %>%
filter(year>1960)
# LOWE CRS
# First: Compare every level to the state's *own* 1960 level
idstates <- unique(Lowe.level_crs$state)
Lowe.cum_crs <- list()
for (i in idstates) {
Lowe.cum_crs[[which(i==idstates)]] <- cbind(state = i, year=1960:2004,
sweep(Lowe.level_crs[Lowe.level_crs$state==i,-c(1:2)],MARGIN = 2,
STATS = as.numeric(Lowe.level_crs[Lowe.level_crs$state==i,-c(1:2)][1,]),FUN = "/")) # for myself: 2 refers to column
}
Lowe.cum_crs <- do.call(rbind, Lowe.cum_crs) #turns the list into a data frame
# Second: Keep only TFP and rename it
Lowe.cum_crs = subset(Lowe.cum_crs, select = c("year", "TFP") )
Lowe.cum_crs <- dplyr::rename(Lowe.cum_crs, "TFP_lowe_crs" = "TFP")
# Third: Delete first year
Lowe.cum_crs <- Lowe.cum_crs %>%
filter(year>1960)
# ADEA VRS
# First: Compare every level to the state's *own* 1960 level
idstates <- unique(ADEA.level_vrs$state)
ADEA.cum_vrs <- list()
for (i in idstates) {
ADEA.cum_vrs[[which(i==idstates)]] <- cbind(state = i, year=1960:2004,
sweep(ADEA.level_vrs[ADEA.level_vrs$state==i,-c(1:2)],MARGIN = 2,
STATS = as.numeric(ADEA.level_vrs[ADEA.level_vrs$state==i,-c(1:2)][1,]),FUN = "/")) # for myself: 2 refers to column
}
ADEA.cum_vrs <- do.call(rbind, ADEA.cum_vrs) #turns the list into a data frame
# Second: Keep only TFP and rename it
ADEA.cum_vrs = subset(ADEA.cum_vrs, select = c("year", "TFP") )
ADEA.cum_vrs <- dplyr::rename(ADEA.cum_vrs, "TFP_ADEA_vrs" = "TFP")
# Third: Delete first year
ADEA.cum_vrs <- ADEA.cum_vrs %>%
filter(year>1960)
# ADEA CRS
# First: Compare every level to the state's *own* 1960 level
idstates <- unique(ADEA.level_crs$state)
ADEA.cum_crs <- list()
for (i in idstates) {
ADEA.cum_crs[[which(i==idstates)]] <- cbind(state = i, year=1960:2004,
sweep(ADEA.level_crs[ADEA.level_crs$state==i,-c(1:2)],MARGIN = 2,
STATS = as.numeric(ADEA.level_crs[ADEA.level_crs$state==i,-c(1:2)][1,]),FUN = "/")) # for myself: 2 refers to column
}
ADEA.cum_crs <- do.call(rbind, ADEA.cum_crs) #turns the list into a data frame
# Second: Keep only TFP and rename it
ADEA.cum_crs = subset(ADEA.cum_crs, select = c("year", "TFP") )
ADEA.cum_crs <- dplyr::rename(ADEA.cum_crs, "TFP_ADEA_crs" = "TFP")
# Third: Delete first year
ADEA.cum_crs <- ADEA.cum_crs %>%
filter(year>1960)
# MSFA VRS
# First: Compare every level to the state's *own* 1960 level
idstates <- unique(MSFA.level_vrs$state)
MSFA.cum_vrs <- list()
for (i in idstates) {
MSFA.cum_vrs[[which(i==idstates)]] <- cbind(state = i, year=1960:2004,
sweep(MSFA.level_vrs[MSFA.level_vrs$state==i,-c(1:2)],MARGIN = 2,
STATS = as.numeric(MSFA.level_vrs[MSFA.level_vrs$state==i,-c(1:2)][1,]),FUN = "/")) # for myself: 2 refers to column
}
MSFA.cum_vrs <- do.call(rbind, MSFA.cum_vrs) #turns the list into a data frame
# Second: Keep only TFP and rename it
MSFA.cum_vrs = subset(MSFA.cum_vrs, select = c("year", "TFPit") )
MSFA.cum_vrs <- dplyr::rename(MSFA.cum_vrs, "TFP_MSFA_vrs" = "TFPit")
# Third: Delete first year
MSFA.cum_vrs <- MSFA.cum_vrs %>%
filter(year>1960)
# MSFA CRS
# First: Compare every level to the state's *own* 1960 level
idstates <- unique(MSFA.level_crs$state)
MSFA.cum_crs <- list()
for (i in idstates) {
MSFA.cum_crs[[which(i==idstates)]] <- cbind(state = i, year=1960:2004,
sweep(MSFA.level_crs[MSFA.level_crs$state==i,-c(1:2)],MARGIN = 2,
STATS = as.numeric(MSFA.level_crs[MSFA.level_crs$state==i,-c(1:2)][1,]),FUN = "/")) # for myself: 2 refers to column
}
MSFA.cum_crs <- do.call(rbind, MSFA.cum_crs) #turns the list into a data frame
# Second: Keep only TFP and rename it
MSFA.cum_crs = subset(MSFA.cum_crs, select = c("year", "TFPit") )
MSFA.cum_crs <- dplyr::rename(MSFA.cum_crs, "TFP_MSFA_crs" = "TFPit")
# Third: Delete first year
MSFA.cum_crs <- MSFA.cum_crs %>%
filter(year>1960)
# Global Malmquist
# First: Compare every level to the state's *own* 1960 level
idstates <- unique(GlobMalm.levels$state)
GlobMalm.cum <- list()
for (i in idstates) {
GlobMalm.cum[[which(i==idstates)]] <- cbind(state = i, year=1960:2004,
sweep(GlobMalm.levels[GlobMalm.levels$state==i,-c(1:3)],MARGIN = 2,
STATS = as.numeric(GlobMalm.levels[GlobMalm.levels$state==i,-c(1:3)][1,]),FUN = "/")) # for myself: 2 refers to column
}
GlobMalm.cum <- do.call(rbind, GlobMalm.cum) #turns the list into a data frame
# Second: Keep only TFP and rename it
GlobMalm.cum = subset(GlobMalm.cum, select = c("year", "DOGt") )
GlobMalm.cum <- dplyr::rename(GlobMalm.cum, "TFP_GlobMalm" = "DOGt")
# Third: Delete first year
GlobMalm.cum <- GlobMalm.cum %>%
filter(year>1960)
# all indexes
densities_TFP_US48 <- cbind(Lowe.cum_vrs,
Lowe.cum_crs,
ADEA.cum_vrs,
ADEA.cum_crs,
MSFA.cum_vrs,
MSFA.cum_crs,
GlobMalm.cum)
# reshape
densities_TFP_US48 <- as.data.frame(melt(densities_TFP_US48,id="year"))
str(densities_TFP_US48)
#plot
Fig_densities_TFP_US48 <- ggplot() +
geom_density(data = densities_TFP_US48, aes(x = value, linetype = variable, color = variable)
) + labs(
x = "",
y = "",
linetype = ""
) + scale_linetype_manual(name = "",
breaks=c("TFP_lowe_vrs", "TFP_lowe_crs", "TFP_ADEA_vrs", "TFP_ADEA_crs", "TFP_MSFA_vrs", "TFP_MSFA_crs", "TFP_GlobMalm"),
labels=c("Lowe VRS", "Lowe CRS", "A-DEA VRS", "A-DEA CRS", "M-SFA VRS", "M-SFA CRS", "Global Malmquist"),
values=c("solid", "solid", "42", "42", "1141", "1141", "12")) +
scale_color_manual(name ="",
breaks=c("TFP_lowe_vrs", "TFP_lowe_crs", "TFP_ADEA_vrs", "TFP_ADEA_crs", "TFP_MSFA_vrs", "TFP_MSFA_crs", "TFP_GlobMalm"),
labels=c("Lowe VRS", "Lowe CRS", "A-DEA VRS", "A-DEA CRS", "M-SFA VRS", "M-SFA CRS", "Global Malmquist"),
values=c("#0a0a0a","#9E9E9E","#0a0a0a","#9E9E9E","#0a0a0a","#9E9E9E","#9E9E9E")) +
theme_bw() +
scale_x_continuous(breaks = seq(-1, 7, by = 1)) +
theme(axis.text.x = element_text(angle=0)) +
theme(legend.position="none")
# Note: In Stata I can check how different the distributions are
# using the Quantile approach by Combes et al. (2012) with
# the estquant function. See the file "Stata_CompareDensities.do".
#foreign::write.dta(densities_all[densities_all$variable%in%c("TFP_fp.par","TFP_malm"),],file="R_output/densities.dta")
#for review: export all densities
foreign::write.dta(densities_TFP_US48,file="R_output/densities.dta")
#--------------------------------#
# Comparison 3: Plot average TFP #
#--------------------------------#
# LOWE VRS
# First: Compare every level to the state's *own* 1960 level
idstates <- unique(Lowe.level_vrs$state)
Lowe.cum_vrs <- list()
for (i in idstates) {
Lowe.cum_vrs[[which(i==idstates)]] <- cbind(state = i, year=1960:2004,
sweep(Lowe.level_vrs[Lowe.level_vrs$state==i,-c(1:2)],MARGIN = 2,
STATS = as.numeric(Lowe.level_vrs[Lowe.level_vrs$state==i,-c(1:2)][1,]),FUN = "/")) # for myself: 2 refers to column
}
Lowe.cum_vrs <- do.call(rbind, Lowe.cum_vrs) #turns the list into a data frame
# Second: Calculate the geometric mean
# --> Create the US average using a geometric mean (no arithmetic because we do not have logs)
Lowe_US48.cum_vrs <- list()
for (yr in 1960:2004) {
Lowe_US48.cum_vrs[[which(yr == 1960:2004)]] <- c(year = yr, apply(Lowe.cum_vrs[Lowe.cum_vrs$year==yr,-c(1:2)],2,FUN = function(x) exp(mean(log(x)))))
}
Lowe_US48.cum_vrs <- as.data.frame(do.call(rbind, Lowe_US48.cum_vrs)) #turns the list into a data frame
# Third: Keep only TFP and rename it
Lowe_US48.cum_vrs = subset(Lowe_US48.cum_vrs, select = c("year", "TFP") )
Lowe_US48.cum_vrs <- dplyr::rename(Lowe_US48.cum_vrs, "TFP_lowe_vrs" = "TFP")
# LOWE CRS
# First: Compare every level to the state's *own* 1960 level
idstates <- unique(Lowe.level_crs$state)
Lowe.cum_crs <- list()
for (i in idstates) {
Lowe.cum_crs[[which(i==idstates)]] <- cbind(state = i, year=1960:2004,
sweep(Lowe.level_crs[Lowe.level_crs$state==i,-c(1:2)],MARGIN = 2,
STATS = as.numeric(Lowe.level_crs[Lowe.level_crs$state==i,-c(1:2)][1,]),FUN = "/")) # for myself: 2 refers to column
}
Lowe.cum_crs <- do.call(rbind, Lowe.cum_crs) #turns the list into a data frame
# Second: Calculate the geometric mean
# --> Create the US average using a geometric mean (no arithmetic because we do not have logs)
Lowe_US48.cum_crs <- list()
for (yr in 1960:2004) {
Lowe_US48.cum_crs[[which(yr == 1960:2004)]] <- c(year = yr, apply(Lowe.cum_crs[Lowe.cum_crs$year==yr,-c(1:2)],2,FUN = function(x) exp(mean(log(x)))))
}
Lowe_US48.cum_crs <- as.data.frame(do.call(rbind, Lowe_US48.cum_crs)) #turns the list into a data frame
# Third: Keep only TFP and rename it
Lowe_US48.cum_crs = subset(Lowe_US48.cum_crs, select = c("year", "TFP") )
Lowe_US48.cum_crs <- dplyr::rename(Lowe_US48.cum_crs, "TFP_lowe_crs" = "TFP")
# ADEA VRS
# First: Compare every level to the state's *own* 1960 level
idstates <- unique(ADEA.level_vrs$state)
ADEA.cum_vrs <- list()
for (i in idstates) {
ADEA.cum_vrs[[which(i==idstates)]] <- cbind(state = i, year=1960:2004,
sweep(ADEA.level_vrs[ADEA.level_vrs$state==i,-c(1:2)],MARGIN = 2,
STATS = as.numeric(ADEA.level_vrs[ADEA.level_vrs$state==i,-c(1:2)][1,]),FUN = "/")) # for myself: 2 refers to column
}
ADEA.cum_vrs <- do.call(rbind, ADEA.cum_vrs) #turns the list into a data frame
# Second: Calculate the geometric mean
# --> Create the US average using a geometric mean (no arithmetic because we do not have logs)
ADEA_US48.cum_vrs <- list()
for (yr in 1960:2004) {
ADEA_US48.cum_vrs[[which(yr == 1960:2004)]] <- c(year = yr, apply(ADEA.cum_vrs[ADEA.cum_vrs$year==yr,-c(1:2)],2,FUN = function(x) exp(mean(log(x)))))
}
ADEA_US48.cum_vrs <- as.data.frame(do.call(rbind, ADEA_US48.cum_vrs)) #turns the list into a data frame
# Third: Keep only TFP and rename it
ADEA_US48.cum_vrs = subset(ADEA_US48.cum_vrs, select = c("year", "TFP") )
ADEA_US48.cum_vrs <- dplyr::rename(ADEA_US48.cum_vrs, "TFP_ADEA_vrs" = "TFP")
# ADEA CRS
# First: Compare every level to the state's *own* 1960 level
idstates <- unique(ADEA.level_crs$state)
ADEA.cum_crs <- list()
for (i in idstates) {
ADEA.cum_crs[[which(i==idstates)]] <- cbind(state = i, year=1960:2004,
sweep(ADEA.level_crs[ADEA.level_crs$state==i,-c(1:2)],MARGIN = 2,
STATS = as.numeric(ADEA.level_crs[ADEA.level_crs$state==i,-c(1:2)][1,]),FUN = "/")) # for myself: 2 refers to column
}
ADEA.cum_crs <- do.call(rbind, ADEA.cum_crs) #turns the list into a data frame
# Second: Calculate the geometric mean
# --> Create the US average using a geometric mean (no arithmetic because we do not have logs)
ADEA_US48.cum_crs <- list()
for (yr in 1960:2004) {
ADEA_US48.cum_crs[[which(yr == 1960:2004)]] <- c(year = yr, apply(ADEA.cum_crs[ADEA.cum_crs$year==yr,-c(1:2)],2,FUN = function(x) exp(mean(log(x)))))
}
ADEA_US48.cum_crs <- as.data.frame(do.call(rbind, ADEA_US48.cum_crs)) #turns the list into a data frame
# Third: Keep only TFP and rename it
ADEA_US48.cum_crs = subset(ADEA_US48.cum_crs, select = c("year", "TFP") )
ADEA_US48.cum_crs <- dplyr::rename(ADEA_US48.cum_crs, "TFP_ADEA_crs" = "TFP")
# MSFA VRS
# First: Compare every level to the state's *own* 1960 level
idstates <- unique(MSFA.level_vrs$state)
MSFA.cum_vrs <- list()
for (i in idstates) {
MSFA.cum_vrs[[which(i==idstates)]] <- cbind(state = i, year=1960:2004,
sweep(MSFA.level_vrs[MSFA.level_vrs$state==i,-c(1:2)],MARGIN = 2,
STATS = as.numeric(MSFA.level_vrs[MSFA.level_vrs$state==i,-c(1:2)][1,]),FUN = "/")) # for myself: 2 refers to column
}
MSFA.cum_vrs <- do.call(rbind, MSFA.cum_vrs) #turns the list into a data frame
# Second: Calculate the geometric mean
# --> Create the US average using a geometric mean (no arithmetic because we do not have logs)
MSFA_US48.cum_vrs <- list()
for (yr in 1960:2004) {
MSFA_US48.cum_vrs[[which(yr == 1960:2004)]] <- c(year = yr, apply(MSFA.cum_vrs[MSFA.cum_vrs$year==yr,-c(1:2)],2,FUN = function(x) exp(mean(log(x)))))
}
MSFA_US48.cum_vrs <- as.data.frame(do.call(rbind, MSFA_US48.cum_vrs)) #turns the list into a data frame
# Third: Keep only TFP and rename it
MSFA_US48.cum_vrs = subset(MSFA_US48.cum_vrs, select = c("year", "TFPit") )
MSFA_US48.cum_vrs <- dplyr::rename(MSFA_US48.cum_vrs, "TFP_MSFA_vrs" = "TFPit")
# MSFA CRS
# First: Compare every level to the state's *own* 1960 level
idstates <- unique(MSFA.level_crs$state)
MSFA.cum_crs <- list()
for (i in idstates) {
MSFA.cum_crs[[which(i==idstates)]] <- cbind(state = i, year=1960:2004,
sweep(MSFA.level_crs[MSFA.level_crs$state==i,-c(1:2)],MARGIN = 2,
STATS = as.numeric(MSFA.level_crs[MSFA.level_crs$state==i,-c(1:2)][1,]),FUN = "/")) # for myself: 2 refers to column
}
MSFA.cum_crs <- do.call(rbind, MSFA.cum_crs) #turns the list into a data frame
# Second: Calculate the geometric mean
# --> Create the US average using a geometric mean (no arithmetic because we do not have logs)
MSFA_US48.cum_crs <- list()
for (yr in 1960:2004) {
MSFA_US48.cum_crs[[which(yr == 1960:2004)]] <- c(year = yr, apply(MSFA.cum_crs[MSFA.cum_crs$year==yr,-c(1:2)],2,FUN = function(x) exp(mean(log(x)))))
}
MSFA_US48.cum_crs <- as.data.frame(do.call(rbind, MSFA_US48.cum_crs)) #turns the list into a data frame
# Third: Keep only TFP and rename it
MSFA_US48.cum_crs = subset(MSFA_US48.cum_crs, select = c("year", "TFPit") )
MSFA_US48.cum_crs <- dplyr::rename(MSFA_US48.cum_crs, "TFP_MSFA_crs" = "TFPit")
# Global Malmquist
# First: Compare every level to the state's *own* 1960 level
idstates <- unique(GlobMalm.levels$state)
GlobMalm.cum_ <- list()
for (i in idstates) {
GlobMalm.cum_[[which(i==idstates)]] <- cbind(state = i, year=1960:2004,
sweep(GlobMalm.levels[GlobMalm.levels$state==i,-c(1:3)],MARGIN = 2,
STATS = as.numeric(GlobMalm.levels[GlobMalm.levels$state==i,-c(1:3)][1,]),FUN = "/")) # for myself: 2 refers to column
}
GlobMalm.cum_ <- do.call(rbind, GlobMalm.cum_) #turns the list into a data frame
# Second: Calculate the geometric mean
# --> Create the US average using a geometric mean (no arithmetic because we do not have logs)
GlobMalm_US48.cum <- list()
for (yr in 1960:2004) {
GlobMalm_US48.cum[[which(yr == 1960:2004)]] <- c(year = yr, apply(GlobMalm.cum_[GlobMalm.cum_$year==yr,-c(1:2)],2,FUN = function(x) exp(mean(log(x)))))
}
GlobMalm_US48.cum <- as.data.frame(do.call(rbind, GlobMalm_US48.cum)) #turns the list into a data frame
# Third: Keep only TFP and rename it
GlobMalm_US48.cum = subset(GlobMalm_US48.cum, select = c("year", "DOGt") )
GlobMalm_US48.cum <- dplyr::rename(GlobMalm_US48.cum, "TFP_GlobMalm" = "DOGt")
# all indexes
All_TFP_US48 <- left_join(Lowe_US48.cum_vrs,Lowe_US48.cum_crs)
All_TFP_US48 <- left_join(All_TFP_US48,ADEA_US48.cum_vrs)
All_TFP_US48 <- left_join(All_TFP_US48,ADEA_US48.cum_crs)
All_TFP_US48 <- left_join(All_TFP_US48,MSFA_US48.cum_vrs)
All_TFP_US48 <- left_join(All_TFP_US48,MSFA_US48.cum_crs)
All_TFP_US48 <- left_join(All_TFP_US48,GlobMalm_US48.cum)
#reshape
All_TFP_US48 <- melt(All_TFP_US48, id.vars="year")
#plot
Fig_All_TFP_US48 <- ggplot() +
geom_line(data = All_TFP_US48, aes(x = year, y = value, linetype = variable, color = variable)
) + labs(
x = "",
y = "",
linetype = ""
) + scale_linetype_manual(name ="",
breaks=c("TFP_lowe_vrs", "TFP_lowe_crs", "TFP_ADEA_vrs", "TFP_ADEA_crs", "TFP_MSFA_vrs", "TFP_MSFA_crs", "TFP_GlobMalm"),
labels=c("Lowe VRS", "Lowe CRS", "A-DEA VRS", "A-DEA CRS", "M-SFA VRS", "M-SFA CRS", "Global Malmquist"),
values=c("solid", "solid", "42", "42", "1141", "1141", "12")) +
scale_color_manual(name ="",
breaks=c("TFP_lowe_vrs", "TFP_lowe_crs", "TFP_ADEA_vrs", "TFP_ADEA_crs", "TFP_MSFA_vrs", "TFP_MSFA_crs", "TFP_GlobMalm"),
labels=c("Lowe VRS", "Lowe CRS", "A-DEA VRS", "A-DEA CRS", "M-SFA VRS", "M-SFA CRS", "Global Malmquist"),
values=c("#0a0a0a","#9E9E9E","#0a0a0a","#9E9E9E","#0a0a0a","#9E9E9E","#9E9E9E")) +
theme_bw() +
scale_x_continuous(breaks = seq(1960, 2004, by = 3)) +
scale_y_continuous(breaks = seq(0, 2, by = 1), limits=c(0,2.5)) +
theme(axis.text.x = element_text(angle=90)) +
theme(legend.position="bottom",
legend.margin=margin(t = -0.7, unit='cm'),
legend.text=element_text(size=7))
#--------------------------#
# both plots in one figure #
#--------------------------#
tikz(file = "Figures/Fig_Compare_TFP_US48.tex", width = 6, height = 6)
plot <- ggarrange(Fig_densities_TFP_US48,Fig_All_TFP_US48,
labels = c("a", "b"),
ncol = 1, nrow = 2)
print(plot)
dev.off()