-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathI-Fertilizers-Calculation.R
682 lines (462 loc) · 30.2 KB
/
I-Fertilizers-Calculation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
################################################################################
# Fertilizer conversion from ZA-AUI data #
# date: 18/10/2021 #
# generated file: I-Fert_N_per_plot.csv #
# Hervé D., Philippe M, Niklas M. #
################################################################################
setwd("Y:/Papers and Data/Datasets/ZA AUI Data/data_transformation_HD_PM_NM")
library(tidyverse)
library(DescTools)
#Steps to convert raw ZA-AUI data on fertilizer in comparable fertilizer units per plot/farmer/year
#Read-in data for the years 2009 to 2018
#External data from ZA-AUI database (protected data)
d9 <- read.csv2("./Feldkalender/Feldkalender_2009.csv", header = T, stringsAsFactors = F)
d10 <- read.csv2("./Feldkalender/Feldkalender_2010.csv", header = T, stringsAsFactors = F)
d11 <- read.csv2("./Feldkalender/Feldkalender_2011.csv", header = T, stringsAsFactors = F)
d12 <- read.csv2("./Feldkalender/Feldkalender_2012.csv", header = T, stringsAsFactors = F)
d13 <- read.csv2("./Feldkalender/Feldkalender_2013.csv", header = T, stringsAsFactors = F)
d14 <- read.csv2("./Feldkalender/Feldkalender_2014.csv", header = T, stringsAsFactors = F)
d15 <- read.csv2("./Feldkalender/Feldkalender_2015.csv", header = T, stringsAsFactors = F)
d16 <- read.csv2("./Feldkalender/Feldkalender_2016.csv", header = T, stringsAsFactors = F)
d17 <- read.csv2("./Feldkalender/Feldkalender_2017.csv", header = T, stringsAsFactors = F)
d18 <- read.csv2("./Feldkalender/Feldkalender_2018.csv", header = T, stringsAsFactors = F)
#Creating ds list with data from 2009 to 2018
ds <- list(d9, d10, d11, d12, d13, d14, d15, d16, d17, d18)
#Creating a vector for the years 2009 to 2018
years <- c(2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018)
# Loading the file with correspondent AUI.ID for AUI.Betriebsnr.
ID <- read.csv2("Zuweisung_BetrNr_AUI_ID.csv", header = T, stringsAsFactors = F)
# Replace ZA.Betriebnsr. identification variable by the unique AUI.ID identification variable
IDConverter <- cbind.data.frame(ID$AUI.ID, ID$AUI.Betriebsnummer)
colnames(IDConverter) <- c("AUI.ID", "AUI.Betriebsnummer")
IDConverter <- with(IDConverter, setNames(AUI.ID, AUI.Betriebsnummer))
dfs <- lapply(years, function(y) {
df <- read.csv2(paste0("./Feldkalender/Feldkalender_", y, ".csv"), header = T, stringsAsFactors = F)
within(df, ZA.Betriebsnr. <- unname(IDConverter[as.character(ZA.Betriebsnr.)]))
})
for (i in 1:length(years)) {
ds[[i]] <- dfs[[i]]
colnames(ds[[i]])[colnames(ds[[i]]) == "ZA.Betriebsnr."] <- "AUI.ID"
}
# Create variable: Menge.Produkt.ha = Menge.Produkt/Massnahmeflaeche
for (i in 1:length(years)) {
o <- ds[[i]]
Menge.Produkt.ha <- c()
Menge.Produkt.ha <- (as.numeric(o$Menge.Produkt) / as.numeric(o$Massnahmeflaeche))
Menge.Produkt.ha[is.na(Menge.Produkt.ha)] <- 0
o2 <- cbind(o, as.numeric(Menge.Produkt.ha))
colnames(o2)[colnames(o2) == "as.numeric(Menge.Produkt.ha)"] <- "Menge.Produkt.ha"
ds[[i]] <- o2
}
# Loading the products data and kick out the fruits
Produkte <- read.csv2("Produkte.csv", header = T, stringsAsFactors = F)
Notinteresting <- Produkte$Produkte[c(6:17, 23, 25, 27, 28, 31, 33, 38, 39, 40, 47:60, 43, 63:67)]
interesting <- Produkte[!(Produkte$Produkte %in% Notinteresting), ]
# Loading fertilizer conversion table
fert_conv <- read.csv2("Fertilizer_conversion_new2.csv", header = T, stringsAsFactors = F)
# Fields that don't have Einheiten (units) are empty == "", for example:
View(fert_conv[1:10, c(1, 2, 10)])
# Number of lines without Units:
dim(fert_conv[fert_conv$Einheiten == "", ])
# List of units and number of line for each unit:
table(fert_conv$Einheiten[fert_conv$Einheiten != ""])
# 1. Relevant part of ZA-AUI data
# a)
# i)"dat" contains the cleaned data
# ii)"o" contains the raw data of each year
# iii)"o3" contains the raw data only for relevant crops (can be extended)
# iv)"o4" has cleaned double entries
# v)Save "clean" data in dat list
dat <- list()
for (i in 1:length(years)) {
o <- ds[[i]]
o3 <- o[(o$Kultur %in% interesting), ]
o3$Produktbezeichnung[(!(is.na(o3$orig..Produktbezeichnung))) & o3$orig..Produktbezeichnung != ""] <- o3$orig..Produktbezeichnung[(!(is.na(o3$orig..Produktbezeichnung))) & o3$orig..Produktbezeichnung != ""] # manual changes to the names of products are misleading
o4 <- o3 %>%
distinct(AUI.ID, Schlag.ID, Schlagflaeche, Kultur, Datum, Massnahme, Massnahmedetail.ID,
Massnahmentyp, Massnahmentypnr., Massnahmeflaeche, Produktbezeichnung,
Menge.Produkt.ha, Einheit.Produkt, keep_all = T)
dat[[i]] <- o4
}
# b) Delete data which contains Outliers (fond through aggregates, inspection)
# For 2009
o <- dat[[1]]
o <- o[o$AUI.ID != 101, ]
o <- o[o$AUI.ID != 190 & o$Kultur != "Silomais", ]
o <- o[o$AUI.ID != 267 & o$Kultur != "Silomais", ]
o <- o[o$AUI.ID != 222 & o$Kultur != "Zuckerrüben", ]
o <- o[o$Massnahmedetail.ID != "9DFDA6A8-BC81-44BB-8EC7-FB3FB8", ]
dat[[1]] <- o
# For 2010
o <- dat[[2]]
o <- o[o$Massnahmedetail.ID != "E23BD655-8511-47F2-871F-7B20BE", ]
o <- o[o$Massnahmedetail.ID != "02CB608F-B02F-4F16-99EE-1AA801", ]
o <- o[o$Massnahmedetail.ID != "07493E6C-001F-485D-B5B0-625569", ]
o <- o[o$Massnahmedetail.ID != "1BE5A602-091E-4A31-85AF-0F5929", ]
o <- o[o$Massnahmedetail.ID != "4395E33B-A1B1-4863-9BA1-184FAD", ]
dat[[2]] <- o
# For 2011
o <- dat[[3]]
o <- o[o$Massnahmedetail.ID != "EF16C506-92F3-4A7F-A49A-F97DB7", ]
o <- o[o$Massnahmedetail.ID != "DBB47076-C724-4433-BC80-B21AD3", ]
o <- o[o$Massnahmedetail.ID != "81564FB2-3FD7-4EB8-982E-82EED6", ]
dat[[3]] <- o
# For 2012
o <- dat[[4]]
o <- o[o$Massnahmedetail.ID != "F5848AC8-46A1-4A8F-9EBF-B3A8FD", ]
o <- o[o$Massnahmedetail.ID != "9C2284D3-AAF9-4BB6-A441-D46193", ]
o <- o[o$Massnahmedetail.ID != "9B460057-4D68-4E96-8A12-E41A59", ]
o <- o[o$Massnahmedetail.ID != "F5848AC8-46A1-4A8F-9EBF-B3A8FD", ]
dat[[4]] <- o
# For 2013
o <- dat[[5]]
o <- o[!(o$AUI.ID == 279 & o$Kultur == "Winterweizen"), ]
o <- o[o$Massnahmedetail.ID != "FBECAC5B-EB31-4B21-BEAD-AF74B2", ]
dat[[5]] <- o
# For 2014 (to be checked)
o <- dat[[6]]
dat[[6]] <- o
# For 2015 (to be checked)
o <- dat[[7]]
dat[[7]] <- o
# For 2016 (to be checked)
o <- dat[[8]]
dat[[8]] <- o
# For 2017 (to be checked)
o <- dat[[9]]
dat[[9]] <- o
# For 2018 (to be checked)
o <- dat[[10]]
dat[[10]] <- o
# c) Delete plots which do not contain at least one seeding and one harvesting activity (uncomplete data)
dims <- matrix(nrow = 10, ncol = 2) # Matrix to compare the dimension before and after deletion
colnames(dims) <- c("Old", "New")
dat_corr <- list()
for (i in 1:length(years)) {
o <- dat[[i]] # basic data
dims[i, 1] <- length(unique(o$Schlag.ID)) # the number of plots before cleaning
seeding <- o %>% # seedingevents
filter(Massnahmentypnr. == 2) %>%
group_by(Schlag.ID) %>%
tally() %>%
transmute(Schlag.ID = Schlag.ID, seedevents = n)
harvesting <- o %>% # harvestingevents
filter(Massnahmentypnr. %in% c(5, 6)) %>%
group_by(Schlag.ID) %>%
tally() %>%
transmute(Schlag.ID = Schlag.ID, harvestevents = n)
Plots <- as.data.frame(o$Schlag.ID) # Plots as indicated before
colnames(Plots) <- "Schlag.ID"
Plots <- unique(Plots)
Plots1 <- merge(Plots, seeding, by = "Schlag.ID", all.x = T) # Merge numbers on events with original plots
Plots2 <- merge(Plots1, harvesting, by = "Schlag.ID", all.x = T)
Plots2$seedevents[is.na(Plots2$seedevents)] <- 0
Plots2$harvestevents[is.na(Plots2$harvestevents)] <- 0
Plots3 <- Plots2 %>% # delete those where either no seeding or no harvesting is indicated
filter(harvestevents != 0) %>%
filter(seedevents != 0)
dims[i, 2] <- length(unique(Plots3$Schlag.ID)) # save the new number of plots
dat_corr[[i]] <- o[o$Schlag.ID %in% Plots3$Schlag.ID, ] # save only the plots with at least one seeding and one harvesting activity
}
# d) Define a start and an end date for each culture/plot
# The start date is the day of seeding - 1 month , the end day is the day of the last harvest activity
for (i in c(1:5, 7:9)) {
o <- dat_corr[[i]]
o2 <- o %>% # seedingevents
filter(Massnahmentypnr. == 2) %>%
filter(Massnahme != "Aussaat Zwischenkultur") %>%
group_by(Schlag.ID) %>%
summarize(earliestseeding = min(as.Date(Datum, format = "%d.%m.%Y"))) # The earliest seeding event on the plot
o2$startdate <- AddMonths(o2$earliestseeding, -2) # substratc another 2 month as a reasonable time period for activities to prepare
o3 <- o %>% # harvestingevents
filter(Massnahmentypnr. %in% c(5, 6)) %>%
group_by(Schlag.ID) %>%
summarize(enddate = max(as.Date(Datum, format = "%d.%m.%Y"))) # The latest harvest day
o4 <- merge(o, o2, by = "Schlag.ID")
o5 <- merge(o4, o3, by = "Schlag.ID")
dat_corr[[i]] <- o5
}
for (i in c(6, 10)) {
o <- dat_corr[[i]]
o2 <- o %>% # seedingevents
filter(Massnahmentypnr. == 2) %>%
filter(Massnahme != "Aussaat Zwischenkultur") %>%
group_by(Schlag.ID) %>%
summarize(earliestseeding = min(as.Date(Datum, format = "%d/%m/%Y"))) # The earliest seeding event on the plot
o2$startdate <- AddMonths(o2$earliestseeding, -2) # substratc another 2 month as a reasonable time period for activities to prepare
o3 <- o %>% # harvestingevents
filter(Massnahmentypnr. %in% c(5, 6)) %>%
group_by(Schlag.ID) %>%
summarize(enddate = max(as.Date(Datum, format = "%d/%m/%Y"))) # The latest harvest day
o4 <- merge(o, o2, by = "Schlag.ID")
o5 <- merge(o4, o3, by = "Schlag.ID")
dat_corr[[i]] <- o5
}
# e) Delete all activities before startdate and after enddate
for (i in c(1:5, 7:9)) {
o <- dat_corr[[i]]
o$Datum <- as.Date(o$Datum, format = "%d.%m.%Y")
o2 <- o[as.Date(o$Datum) >= as.Date(o$startdate), ]
o3 <- o2[as.Date(o2$Datum) <= as.Date(o2$enddate), ]
o4 <- o3[as.Date(o3$earliestseeding) <= as.Date(o3$enddate), ]
dat_corr[[i]] <- o4
}
for (i in c(6, 10)) {
o <- dat_corr[[i]]
o$Datum <- as.Date(o$Datum, format = "%d/%m/%Y")
o2 <- o[as.Date(o$Datum) >= as.Date(o$startdate), ]
o3 <- o2[as.Date(o2$Datum) <= as.Date(o2$enddate), ]
o4 <- o3[as.Date(o3$earliestseeding) <= as.Date(o3$enddate), ]
dat_corr[[i]] <- o4
}
# f) Correct cases where Application Surface is greater than Plotsize
# Then correct the amount of product applied by the quota of both
for (i in 1:10) {
o <- dat_corr[[i]]
o <- o[!is.na(o$Massnahmeflaeche), ]
o <- o[!is.na(o$Schlagflaeche), ]
o$plotquota <- as.numeric(o$Schlagflaeche) / as.numeric(o$Massnahmeflaeche)
o$Menge.Produkt[o$Massnahmeflaeche > o$Schlagflaeche] <- o$Menge.Produkt[o$Massnahmeflaeche > o$Schlagflaeche] * o$plotquota[o$Massnahmeflaeche > o$Schlagflaeche]
dat_corr[[i]] <- o
}
# g) Only fertilization
dat_fert <- list()
for (i in 1:length(years)) {
o2 <- dat_corr[[i]] # the corrected data
o3 <- o2[o2$Massnahmentyp == "Düngung", ] # only fertilization measures relevant
dat_fert[[i]] <- o3 # save "clean" data in dat list
}
## 2. Merge data and conversion table
# Does conversion table match data?:
# d<-rbind(dat_fert[[1]],dat_fert[[2]],dat_fert[[3]],dat_fert[[4]],dat_fert[[5]],dat_fert[[6]],dat_fert[[7]],dat_fert[[8]],dat_fert[[9]],dat_fert[[10]])
# table((paste(d$Produktbezeichnung,d$Einheit.Produkt)) %in% paste(fert_conv$Produktbezeichnung,fert_conv$Einheit.Produkt))
# Add <-table((paste(d$Produktbezeichnung,d$Einheit.Produkt))[(!(paste(d$Produktbezeichnung,d$Einheit.Produkt)) %in% paste(fert_conv$Produktbezeichnung,fert_conv$Einheit.Produkt))])
# Why do we not have Ammonsalpeter 24 % N 5% Mg 7% S dt and Mg-Ammonsalpeter 23% + 7 S dt and Nitrate magnésien 27 % + 2.5 % Mg + 9 % Ca dt and Ricokalk (Abholung Fabrik) dt and Sulfate d'ammoniaque Mg plus dt Ammonsalpeter 27 % dt ?
# Does conversion table match data?: especially for Zuckerrüben (low aggregate values)
# d<- rbind(dat_fert[[1]],dat_fert[[2]],dat_fert[[3]],dat_fert[[4]],dat_fert[[5]],dat_fert[[6]],dat_fert[[7]],dat_fert[[8]],dat_fert[[9]],dat_fert[[10]]) %>% filter(Kultur=="Zuckerrüben")
# Add <-table((paste(d$Produktbezeichnung,d$Einheit.Produkt))[(!(paste(d$Produktbezeichnung,d$Einheit.Produkt)) %in% paste(fert_conv$Produktbezeichnung,fert_conv$Einheit.Produkt))])
dat_m <- list() # will contain the merged data
for (i in 1:length(years)) {
o <- dat_fert[[i]] # the cleaned data
o2 <- merge(o, fert_conv, by = c("Produktbezeichnung", "Einheit.Produkt")) # merge data and table by the columns Produktbezeichung and Einheit
o3 <- o2[!(is.na(o2$Menge.Produkt)), ] # Kick out Nas
o3$Faktor_N <- as.numeric(o3$Faktor_N)
o3$Faktor_N[is.na(o3$Faktor_N)] <- 0
o3$Faktor_P <- as.numeric(o3$Faktor_P)
o3$Faktor_P[is.na(o3$Faktor_P)] <- 0
o3$Faktor_K <- as.numeric(o3$Faktor_K)
o3$Faktor_K[is.na(o3$Faktor_K)] <- 0
dat_m[[i]] <- o3
}
# 3. Outlier in Fertilizer applications
# outs1<-rbind(dat_m[[1]],dat_m[[2]],dat_m[[3]],dat_m[[4]],dat_m[[5]],dat_m[[6]],dat_m[[7]],dat_m[[8]],dat_m[[9]],dat_m[[10]])%>%filter(Produktbezeichnung %in% c("Fosse à purin ouverte","Mistplatz Junghennen","Schweinegülle Swissag","Brinamon flüssig") & Einheiten=="kg/m3")
# outs2<-rbind(dat_m[[1]],dat_m[[2]],dat_m[[3]],dat_m[[4]],dat_m[[5]],dat_m[[6]],dat_m[[7]],dat_m[[8]],dat_m[[9]],dat_m[[10]])%>%filter(Produktbezeichnung %in% c("Fosse à purin ouverte","Mistplatz Junghennen","Schweinegülle Swissag","Brinamon flüssig") & Einheiten=="kg/t")
# View(outs1) View(outs2)
# a) correct very strong outliers manually
M2013.10 <- c("459E31BC-B445-49C7-B558-4A9D82", "A8F363DB-6C55-48CD-B8A3-A71DDC", "3A383A05-66FB-4906-A088-4FD8AB", "53FEF481-A83C-48BB-95FB-6A271B")
o <- dat_m[[5]]
o$Menge.Produkt[o$Massnahmedetail.ID %in% c("3F18F771-5E04-4E7A-9965-FDABB2", "245365B3-9699-4064-B031-B7A789")] <- o$Menge.Produkt[o$Massnahmedetail.ID %in% c("3F18F771-5E04-4E7A-9965-FDABB2", "245365B3-9699-4064-B031-B7A789")] / 1000
o$Menge.Produkt.ha[o$Massnahmedetail.ID %in% c("3F18F771-5E04-4E7A-9965-FDABB2", "245365B3-9699-4064-B031-B7A789")] <- o$Menge.Produkt.ha[o$Massnahmedetail.ID %in% c("3F18F771-5E04-4E7A-9965-FDABB2", "245365B3-9699-4064-B031-B7A789")] / 1000
o$Menge.Produkt[o$Massnahmedetail.ID %in% M2013.10] <- o$Menge.Produkt[o$Massnahmedetail.ID %in% M2013.10] / 10
o$Menge.Produkt.ha[o$Massnahmedetail.ID %in% M2013.10] <- o$Menge.Produkt.ha[o$Massnahmedetail.ID %in% M2013.10] / 10
dat_m[[5]] <- o
M2010.10 <- c("F7A0FFA8-BEBB-4DA4-A78F-0E9AC2", "F2CC467E-27CC-4333-8971-8AE23D", "6CC766D8-613C-4CE0-B704-B3DD80", "9C3A779D-A07C-461D-85C8-CBC6C2", "7FFA97A8-B162-4ECD-8274-95C5FE", "A340F008-5129-4D41-8949-41739E", "ED010F6F-1CF9-4618-BB11-FA3A1C")
o <- dat_m[[2]]
o$Menge.Produkt[o$Massnahmedetail.ID %in% c("172B38B1-43AD-475B-8409-949410", "CE3FC4D5-828D-4351-8411-DCAC81")] <- o$Menge.Produkt[o$Massnahmedetail.ID %in% c("172B38B1-43AD-475B-8409-949410", "CE3FC4D5-828D-4351-8411-DCAC81")] / 2
o$Menge.Produkt.ha[o$Massnahmedetail.ID %in% c("172B38B1-43AD-475B-8409-949410", "CE3FC4D5-828D-4351-8411-DCAC81")] <- o$Menge.Produkt.ha[o$Massnahmedetail.ID %in% c("172B38B1-43AD-475B-8409-949410", "CE3FC4D5-828D-4351-8411-DCAC81")] / 2
o$Menge.Produkt[o$Massnahmedetail.ID %in% c("EA6798C7-2CC5-4BE0-A03B-CE36F2", "EC715ADF-4BF2-4FB5-98E6-1CC488")] <- o$Menge.Produkt[o$Massnahmedetail.ID %in% c("EA6798C7-2CC5-4BE0-A03B-CE36F2", "EC715ADF-4BF2-4FB5-98E6-1CC488")] / 100
o$Menge.Produkt.ha[o$Massnahmedetail.ID %in% c("EA6798C7-2CC5-4BE0-A03B-CE36F2", "EC715ADF-4BF2-4FB5-98E6-1CC488")] <- o$Menge.Produkt.ha[o$Massnahmedetail.ID %in% c("EA6798C7-2CC5-4BE0-A03B-CE36F2", "EC715ADF-4BF2-4FB5-98E6-1CC488")] / 100
o$Menge.Produkt[o$Massnahmedetail.ID %in% M2010.10] <- o$Menge.Produkt[o$Massnahmedetail.ID %in% M2010.10] / 10
o$Menge.Produkt.ha[o$Massnahmedetail.ID %in% M2010.10] <- o$Menge.Produkt.ha[o$Massnahmedetail.ID %in% M2010.10] / 10
dat_m[[2]] <- o
M2009.10 <- c("CD3A0F47-EC48-4F8B-96E9-C4DECE", "DB47BEB1-A35C-4EA6-8676-5BABAC", "628FDE0F-3046-421A-AF0D-244255", "AF139021-9689-4817-9520-B64F9E", "62C3E8A2-F80D-4762-A472-1BAB5E", "8BB95009-3295-4F7F-881E-D8169C")
o <- dat_m[[1]]
o$Menge.Produkt[o$Massnahmedetail.ID %in% M2009.10] <- o$Menge.Produkt[o$Massnahmedetail.ID %in% M2009.10] / 10
o$Menge.Produkt.ha[o$Massnahmedetail.ID %in% M2009.10] <- o$Menge.Produkt.ha[o$Massnahmedetail.ID %in% M2009.10] / 10
dat_m[[1]] <- o
M2011.10 <- c("BC985B24-F862-4B9F-A858-A35CB2,7927EC80-CBDB-48FC-8FEA-D27681")
o <- dat_m[[3]]
o$Menge.Produkt[o$Massnahmedetail.ID %in% M2011.10] <- o$Menge.Produkt[o$Massnahmedetail.ID %in% M2011.10] / 10
o$Menge.Produkt.ha[o$Massnahmedetail.ID %in% M2011.10] <- o$Menge.Produkt.ha[o$Massnahmedetail.ID %in% M2011.10] / 10
dat_m[[3]] <- o
M2012.10 <- c("2DA2FE9B-3CD9-4ADB-8F88-090FD1", "F8E157B0-1A50-457E-A99E-F21D68", "07B4406E-3E9E-4F19-B85C-4D27A0", "2322DFFD-52F7-4024-AF69-614708", "E38619FB-CADE-4F59-A808-16BF5E", "C4B4DD7E-5554-416F-882A-D15C12")
o <- dat_m[[4]]
o$Menge.Produkt[o$Massnahmedetail.ID %in% M2012.10] <- o$Menge.Produkt[o$Massnahmedetail.ID %in% M2012.10] / 10
o$Menge.Produkt.ha[o$Massnahmedetail.ID %in% M2012.10] <- o$Menge.Produkt.ha[o$Massnahmedetail.ID %in% M2012.10] / 10
dat_m[[4]] <- o
# b) Find outliers with rules on distribution
# Look at all top ten entries for each combination of Produktbezeichnung und Menge.Produkt
for (i in 1:10) {
o <- dat_m[[i]]
o$Jahr <- rep(years[[i]], times = (dim(o)[1])) # add years to the values
o <- o[o$Menge.Produkt != 0, ]
dat_m[[i]] <- o
}
# d_borders<-rbind(dat_m[[1]],dat_m[[2]],dat_m[[3]],dat_m[[4]],dat_m[[5]],dat_m[[6]],dat_m[[7]],dat_m[[8]],dat_m[[9]],dat_m[[10]])%>% # some summary stats
# group_by(Produktbezeichnung,Einheit.Produkt)%>%
# summarize(mean=mean(Menge.Produkt.ha,na.rm=T),sd=sd(Menge.Produkt.ha,na.rm=T),n=n(),min=min(Menge.Produkt.ha,na.rm=T),max=max(Menge.Produkt.ha,na.rm=T))%>%
# filter(!(is.na(sd)))
#
# d_ranks<-rbind(dat_m[[1]],dat_m[[2]],dat_m[[3]],dat_m[[4]],dat_m[[5]],dat_m[[6]],dat_m[[7]],dat_m[[8]],dat_m[[9]],dat_m[[10]])%>% # the ranking of values
# group_by(Produktbezeichnung,Einheit.Produkt)%>%
# arrange(Produktbezeichnung,Einheit.Produkt, -Menge.Produkt.ha) %>%
# mutate(rank = rank(-Menge.Produkt.ha))
#
#
# d_outs<-merge(d_ranks,d_borders,by=c("Produktbezeichnung","Einheit.Produkt") )%>% #connect and filter
# filter(n.y>10 & rank<=7 & (Menge.Produkt.ha>(2*mean)) | n.y %in% (3:9) & rank<=3 & (Menge.Produkt.ha>(2*mean)))%>%
# select(n.y,Produktbezeichnung,Einheit.Produkt,rank,Menge.Produkt.ha,mean,Massnahmedetail.ID,Jahr,AUI.ID,Kultur)%>%
# arrange(desc(n.y),rank,Produktbezeichnung,Einheit.Produkt,Menge.Produkt.ha)
# Only WW in 2013
# d_borders<-dat_m[[5]]%>%
# filter(Kultur=="Winterweizen") %>%# some summary stats
# group_by(Produktbezeichnung,Einheit.Produkt)%>%
# summarize(mean=mean(Menge.Produkt.ha,na.rm=T),sd=sd(Menge.Produkt.ha,na.rm=T),n=n(),min=min(Menge.Produkt.ha,na.rm=T),max=max(Menge.Produkt.ha,na.rm=T))%>%
# filter(!(is.na(sd)))
#
# d_ranks<-dat_m[[5]]%>%
# filter(Kultur=="Winterweizen") %>%
# group_by(Produktbezeichnung,Einheit.Produkt)%>%
# arrange(Produktbezeichnung,Einheit.Produkt, -Menge.Produkt.ha) %>%
# mutate(rank = rank(-Menge.Produkt.ha))
#
#
# d_outs<-merge(d_ranks,d_borders,by=c("Produktbezeichnung","Einheit.Produkt") )%>% #connect and filter
# filter(n.y>10 & rank<=7 & (Menge.Produkt.ha>(2*mean)) | n.y %in% (3:9) & rank<=3 & (Menge.Produkt.ha>(2*mean)))%>%
# select(n.y,Produktbezeichnung,Einheit.Produkt,rank,Menge.Produkt.ha,mean,Massnahmedetail.ID,Jahr,AUI.ID,Kultur)%>%
# arrange(desc(n.y),rank,Produktbezeichnung,Einheit.Produkt,Menge.Produkt.ha)
## 4. Convert units
# What when dt is the unit? How high is Menge.Produkt?
# d<-rbind(dat_m[[1]],dat_m[[2]],dat_m[[3]],dat_m[[4]],dat_m[[5]],dat_m[[6]],dat_m[[7]],dat_m[[8]],dat_m[[9]],dat_m[[10]])
# table(d$Menge.Produkt[d$Einheiten=="Annahmen"])
# What are the units when "Einheiten" is empty ?
# table(d$Einheit.Produkt[d$Einheiten==""])
# Creation of Lists
dat_conv <- list() # will contain converted units
dat_check_a <- list() # will contain graphs to check if there are strong outliers in the one without Einheiten
dat_check_b <- list() # will contain graphs to check if there are strong outliers in the one with Einheiten
dat_tab_a <- list() # will contain tables to check if there are strong outliers in the one without Einheiten
dat_tab_b <- list() # will contain tables to check if there are strong outliers in the one with Einheiten
# Correcting outlier in Einheit.Produkt and making histograms to see if there are strong outliers
for (i in 1:length(years)) {
o <- dat_m[[i]] # the merged data
# correct outlier in Einheit.Produkt
o$Einheit.Produkt[o$Produktbezeichnung == "Ammonsalpeter 27.5 %" & o$Einheit.Produkt == "kg"] <- "dt"
o.a <- o[o$Einheiten == "", ] # two different conversion rules for those where Einheiten does not have a unit
o.a <- o.a[!(o.a$Einheit.Produkt %in% c("Am", "l", "hl", "Wagen", "mg")), ] # exclude all rows where there is not enough information to use the entry
o.a$N <- o.a$Menge.Produkt * o.a$Faktor_N # N in kg
o.a$N[o.a$Einheit.Produkt == "dt"] <- o.a$N[o.a$Einheit.Produkt == "dt"] * 100 # the standard unit should be kg: convert cases where dt is the outcome to kg
o.a$N[o.a$Einheit.Produkt == "t"] <- o.a$N[o.a$Einheit.Produkt == "t"] * 1000 # the standard unit should be kg: convert cases where t is the outcome to kg
o.a$P <- o.a$Menge.Produkt * o.a$Faktor_P # P in kg
o.a$P[o.a$Einheit.Produkt == "dt"] <- o.a$P[o.a$Einheit.Produkt == "dt"] * 100 # the standard unit should be kg: convert cases where dt is the outcome to kg
o.a$P[o.a$Einheit.Produkt == "t"] <- o.a$P[o.a$Einheit.Produkt == "t"] * 1000 # the standard unit should be kg: convert cases where t is the outcome to kg
o.a$K <- o.a$Menge.Produkt * o.a$Faktor_K # K in kg
o.a$K[o.a$Einheit.Produkt == "dt"] <- o.a$K[o.a$Einheit.Produkt == "dt"] * 100 # the standard unit should be kg: convert cases where dt is the outcome to kg
o.a$K[o.a$Einheit.Produkt == "t"] <- o.a$K[o.a$Einheit.Produkt == "t"] * 1000 # the standard unit should be kg: convert cases where t is the outcome to kg
o.a$N_ha <- o.a$Menge.Produkt.ha * o.a$Faktor_N # N in kg/ha
o.a$N_ha[o.a$Einheit.Produkt == "dt"] <- o.a$N_ha[o.a$Einheit.Produkt == "dt"] * 100 # the standard unit should be kg: convert cases where dt is the outcome to kg
o.a$N_ha[o.a$Einheit.Produkt == "t"] <- o.a$N_ha[o.a$Einheit.Produkt == "t"] * 1000 # the standard unit should be kg: convert cases where t is the outcome to kg
o.a$P_ha <- o.a$Menge.Produkt.ha * o.a$Faktor_P # P in kg/ha
o.a$P_ha[o.a$Einheit.Produkt == "dt"] <- o.a$P_ha[o.a$Einheit.Produkt == "dt"] * 100 # the standard unit should be kg: convert cases where dt is the outcome to kg
o.a$P_ha[o.a$Einheit.Produkt == "t"] <- o.a$P_ha[o.a$Einheit.Produkt == "t"] * 1000 # the standard unit should be kg: convert cases where t is the outcome to kg
o.a$K_ha <- o.a$Menge.Produkt.ha * o.a$Faktor_K # K in kg/ha
o.a$K_ha[o.a$Einheit.Produkt == "dt"] <- o.a$K_ha[o.a$Einheit.Produkt == "dt"] * 100 # the standard unit should be kg: convert cases where dt is the outcome to kg
o.a$K_ha[o.a$Einheit.Produkt == "t"] <- o.a$K_ha[o.a$Einheit.Produkt == "t"] * 1000 # the standard unit should be kg: convert cases where t is the outcome to kg
o.b <- o[o$Einheiten != "", ] # ... and where it has a unit
o.b <- o.b[!(o.b$Einheiten %in% c("Landi- Dünger", "in %", "0")), ] # exclude all rows where there is not enough information to use the entry: What about the 0 ????
o.b$N <- o.b$Menge.Produkt * o.b$Faktor_N # N in kg
o.b$N[o.b$Einheiten == "g/l"] <- o.b$N[o.b$Einheiten == "g/l"] / 1000 # the standard unit should be kg: convert cases where g is the outcome to kg
o.b$N[o.b$Einheiten == "Annahmen"] <- o.b$N[o.b$Einheiten == "Annahmen"] * 100 # the standard unit should be kg: convert cases where dt is the outcome to kg
o.b$P <- o.b$Menge.Produkt * o.b$Faktor_P # P in kg
o.b$P[o.b$Einheiten == "g/l"] <- o.b$P[o.b$Einheiten == "g/l"] / 1000 # the standard unit should be kg: convert cases where g is the outcome to kg
o.b$P[o.b$Einheiten == "Annahmen"] <- o.b$P[o.b$Einheiten == "Annahmen"] * 100 # the standard unit should be kg: convert cases where dt is the outcome to kg
o.b$K <- o.b$Menge.Produkt * o.b$Faktor_K # K in kg
o.b$K[o.b$Einheiten == "g/l"] <- o.b$K[o.b$Einheiten == "g/l"] / 1000 # the standard unit should be kg: convert cases where g is the outcome to kg
o.b$K[o.b$Einheiten == "Annahmen"] <- o.b$K[o.b$Einheiten == "Annahmen"] * 100 # the standard unit should be kg: convert cases where dt is the outcome to kg
o.b$N_ha <- o.b$Menge.Produkt.ha * o.b$Faktor_N # N in kg
o.b$N_ha[o.b$Einheiten == "g/l"] <- o.b$N_ha[o.b$Einheiten == "g/l"] / 1000 # the standard unit should be kg: convert cases where g is the outcome to kg
o.b$N_ha[o.b$Einheiten == "Annahmen"] <- o.b$N_ha[o.b$Einheiten == "Annahmen"] * 100 # the standard unit should be kg: convert cases where dt is the outcome to kg
o.b$P_ha <- o.b$Menge.Produkt.ha * o.b$Faktor_P # P in kg
o.b$P_ha[o.b$Einheiten == "g/l"] <- o.b$P_ha[o.b$Einheiten == "g/l"] / 1000 # the standard unit should be kg: convert cases where g is the outcome to kg
o.b$P_ha[o.b$Einheiten == "Annahmen"] <- o.b$P_ha[o.b$Einheiten == "Annahmen"] * 100 # the standard unit should be kg: convert cases where dt is the outcome to kg
o.b$K_ha <- o.b$Menge.Produkt.ha * o.b$Faktor_K # K in kg
o.b$K_ha[o.b$Einheiten == "g/l"] <- o.b$K_ha[o.b$Einheiten == "g/l"] / 1000 # the standard unit should be kg: convert cases where g is the outcome to kg
o.b$K_ha[o.b$Einheiten == "Annahmen"] <- o.b$K_ha[o.b$Einheiten == "Annahmen"] * 100 # the standard unit should be kg: convert cases where dt is the outcome to kg
o2 <- rbind(o.a, o.b) %>% # connect the two again, select only relevant columns and apply unique
select(AUI.ID, Schlag.ID, Kultur, Massnahmedetail.ID, Massnahmeflaeche, Schlagflaeche, Menge.Produkt, Einheit.Produkt, N, N_ha) %>%
distinct(AUI.ID, Schlag.ID, Kultur, Massnahmedetail.ID, Massnahmeflaeche, Schlagflaeche, Menge.Produkt, Einheit.Produkt, N, N_ha)
dat_conv[[i]] <- o2 # save the converted dataset
o_check_a <- # make histograms to see if there are strong outliers
o.a %>%
select(N, P, K, Einheit.Produkt) %>%
mutate(Einheit.Produkt = as.factor(Einheit.Produkt))
gg_a <- ggplot(o_check_a, aes(x = N))
dat_check_a[[i]] <- gg_a + geom_histogram() + xlim(c(0, 20)) + ggtitle(years[[i]])
dat_tab_a[[i]] <-
table(o.a$N)
o_check_b <-
o.b %>%
select(N, P, K, Einheit.Produkt) %>%
mutate(Einheit.Produkt = as.factor(Einheit.Produkt))
gg_b <- ggplot(o_check_b, aes(x = N))
dat_check_b[[i]] <- gg_b + geom_histogram() + ggtitle(years[[i]])
dat_tab_b[[i]] <-
table(o.b$N)
}
# d<-rbind(dat_conv[[1]],dat_conv[[2]],dat_conv[[3]],dat_conv[[4]],dat_conv[[5]],dat_conv[[6]],dat_conv[[7]],dat_conv[[8]],dat_conv[[9]],dat_conv[[10]])
# two<-(d%>%select(Einheiten,Einheit.Produkt,Menge.Produkt.ha,Produktbezeichnung,N_ha,K_ha,P_ha)%>%group_by(Produktbezeichnung,Einheit.Produkt,Einheiten)%>%summarize(mean_Menge.Produkt.ha=mean(Menge.Produkt.ha,na.rm=T),mean_N_ha=mean(N_ha,na.rm=T),mean_K_ha=mean(K_ha,na.rm=T),mean_P_ha=mean(P_ha,na.rm=T),n=n())%>%arrange(desc(mean_N_ha)))
# d<-rbind(dat_conv[[1]],dat_conv[[2]],dat_conv[[3]],dat_conv[[4]],dat_conv[[5]],dat_conv[[6]],dat_conv[[7]],dat_conv[[8]],dat_conv[[9]],dat_conv[[10]])
# table(duplicated(d$Massnahmedetail.ID))
## 5. Aggregate fertilizer per plot + culture
dat_ag <- list()
dat_ag_kult_farm <- list()
for (i in 1:10) {
o <- dat_conv[[i]]
p <- dat_corr[[i]]
o2 <- o %>% # aggregate N and N_ha on a plot+culture level per year
group_by(AUI.ID, Kultur, Schlag.ID) %>%
summarize(N_total = sum(N, na.rm = T), N_ha_total = sum(N_ha, na.rm = T), flaeche = mean(as.numeric(Schlagflaeche), na.rm = T))
o3 <- o %>%
group_by(AUI.ID, Kultur) %>%
summarize(N_tot_kult = sum(N))
o4 <- p %>%
select(AUI.ID, Kultur, Schlag.ID, Schlagflaeche) %>%
distinct(AUI.ID, Kultur, Schlag.ID, .keep_all = T) %>%
group_by(AUI.ID, Kultur) %>%
summarize(surface = sum(as.numeric(Schlagflaeche)))
o5 <- merge(o3, o4, by = c("AUI.ID", "Kultur")) %>%
group_by(AUI.ID, Kultur) %>%
summarize(N_ha = N_tot_kult / surface, surface = surface, Jahr = years[[i]])
dat_ag[[i]] <- o2
dat_ag_kult_farm[[i]] <- o5
}
# d2<-rbind(dat_ag_kult_farm[[1]],dat_ag_kult_farm[[2]],dat_ag_kult_farm[[3]],dat_ag_kult_farm[[4]],dat_ag_kult_farm[[5]])
# View(d2)
d <- rbind(dat_ag[[1]], dat_ag[[2]], dat_ag[[3]], dat_ag[[4]], dat_ag[[5]], dat_ag[[6]], dat_ag[[7]], dat_ag[[8]], dat_ag[[9]], dat_ag[[10]])
dat_ag_kult_all <- d %>%
group_by(Kultur) %>%
summarize(N_tot_kult = sum(N_total), Surface = sum(flaeche)) %>%
mutate(N_ha_kult = N_tot_kult / Surface)
# View(dat_ag_kult_all)
# Again for Zuckerrüben
for (i in 1:10) {
o <- dat_ag[[i]]
o$Jahr <- rep(years[[i]], times = dim(o)[1])
dat_ag[[i]] <- o
}
# d<-rbind(dat_ag[[1]],dat_ag[[2]],dat_ag[[3]],dat_ag[[4]],dat_ag[[5]],dat_ag[[6]],dat_ag[[7]],dat_ag[[8]],dat_ag[[9]],dat_ag[[10]])
# dat_ag_kult_z<-d%>%
# filter(Kultur=="Zuckerrüben")%>%
# group_by(Jahr,AUI.ID)%>%
# summarize(N_tot_kult=sum(N_total),Surface=sum(flaeche))%>%
# mutate(N_ha_kult=N_tot_kult/Surface)%>%
# arrange(Jahr,N_ha_kult)
# View(dat_ag_kult_z) --> 80 kg N is actually ok --> recoomended max is 100
## 6. Save outcomes ####
# All dat_ag in one dataframe and then save
dat_ag <- rbind(dat_ag[[1]], dat_ag[[2]], dat_ag[[3]], dat_ag[[4]], dat_ag[[5]], dat_ag[[6]], dat_ag[[7]], dat_ag[[8]], dat_ag[[9]], dat_ag[[10]])
write.csv2(dat_ag, "I-Fert_N_per_plot.csv", row.names = F)
# Was needed to correct the conversion tables ...
# write.csv2(Add,"Conversion of units/Bearbeitet Gregor/Add.csv",row.names = F)
# write.csv2(two,"Conversion of units/Bearbeitet Gregor/Outlier_fert.csv",row.names = F)
```