-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathplot_rain.py
68 lines (60 loc) · 5.08 KB
/
plot_rain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import numpy as np
red = np.array([255, 252, 250, 247, 244, 242, 239, 236, 234, 231, 229, 226, 223, 221, 218, 215, 213, 210,
207, 205, 202, 199, 197, 194, 191, 189, 186, 183, 181, 178, 176, 173, 170, 168, 165, 162,
157, 155, 152, 150, 148, 146, 143, 141, 139, 136, 134, 132, 129, 127, 125, 123, 120, 118,
116, 113, 111, 109, 106, 104, 102, 100, 97, 95, 93, 90, 88, 86, 83, 81, 79, 77,
72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72,
72, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73,
73, 78, 83, 87, 92, 97, 102, 106, 111, 116, 121, 126, 130, 135, 140, 145, 150, 154,
159, 164, 169, 173, 178, 183, 188, 193, 197, 202, 207, 212, 217, 221, 226, 231, 236, 240,
245, 250, 250, 250, 250, 249, 249, 249, 249, 249, 249, 249, 249, 248, 248, 248, 248, 248,
248, 248, 247, 247, 247, 247, 247, 247, 247, 246, 246, 246, 246, 246, 246, 246, 246, 245,
245, 245, 244, 243, 242, 241, 240, 239, 239, 238, 237, 236, 235, 234, 233, 232, 231, 230,
229, 228, 228, 227, 226, 225, 224, 223, 222, 221, 220, 219, 218, 217, 217, 216, 215, 214,
213, 211, 209, 207, 206, 204, 202, 200, 199, 197, 195, 193, 192, 190, 188, 186, 185, 183,
181, 179, 178, 176, 174, 172, 171, 169, 167, 165, 164, 162, 160, 158, 157, 155, 153, 151, 150, 146], dtype = np.float)
red = red / 255
print(red.shape)
green = np.array([255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240, 239, 238,
237, 236, 235, 234, 233, 232, 231, 230, 229, 228, 227, 226, 225, 224, 223, 222, 221, 220,
218, 216, 214, 212, 210, 208, 206, 204, 202, 200, 197, 195, 193, 191, 189, 187, 185, 183,
181, 179, 177, 175, 173, 171, 169, 167, 165, 163, 160, 158, 156, 154, 152, 150, 148, 146,
142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160,
161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179,
181, 182, 184, 185, 187, 188, 189, 191, 192, 193, 195, 196, 198, 199, 200, 202, 203, 204,
206, 207, 209, 210, 211, 213, 214, 215, 217, 218, 220, 221, 222, 224, 225, 226, 228, 229,
231, 232, 229, 225, 222, 218, 215, 212, 208, 205, 201, 198, 195, 191, 188, 184, 181, 178,
174, 171, 167, 164, 160, 157, 154, 150, 147, 143, 140, 137, 133, 130, 126, 123, 120, 116,
113, 106, 104, 102, 100, 98, 96, 94, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74,
72, 70, 67, 65, 63, 61, 59, 57, 55, 53, 51, 49, 47, 45, 43, 41, 39, 37,
35, 31, 31, 30, 30, 30, 30, 29, 29, 29, 29, 28, 28, 28, 27, 27, 27, 27,
26, 26, 26, 26, 25, 25, 25, 25, 24, 24, 24, 23, 23, 23, 23, 22, 22, 22, 22, 21], dtype = np.float)
green = green / 255
print(green.shape)
blue = np.array([255, 255, 255, 254, 254, 254, 254, 253, 253, 253, 253, 253, 252, 252, 252, 252, 252, 251,
251, 251, 251, 250, 250, 250, 250, 250, 249, 249, 249, 249, 249, 248, 248, 248, 248, 247,
247, 246, 245, 243, 242, 241, 240, 238, 237, 236, 235, 234, 232, 231, 230, 229, 228, 226,
225, 224, 223, 221, 220, 219, 218, 217, 215, 214, 213, 212, 211, 209, 208, 207, 206, 204,
202, 198, 195, 191, 188, 184, 181, 177, 173, 170, 166, 163, 159, 156, 152, 148, 145, 141,
138, 134, 131, 127, 124, 120, 116, 113, 109, 106, 102, 99, 95, 91, 88, 84, 81, 77,
70, 71, 71, 72, 72, 73, 74, 74, 75, 75, 76, 77, 77, 78, 78, 79, 80, 80,
81, 81, 82, 82, 83, 84, 84, 85, 85, 86, 87, 87, 88, 88, 89, 90, 90, 91,
91, 92, 91, 89, 88, 86, 85, 84, 82, 81, 80, 78, 77, 75, 74, 73, 71, 70,
69, 67, 66, 64, 63, 62, 60, 59, 58, 56, 55, 53, 52, 51, 49, 48, 47, 45,
44, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
40, 40, 40, 39, 39, 38, 38, 38, 37, 37, 36, 36, 36, 35, 35, 34, 34, 34,
33, 33, 32, 32, 31, 31, 31, 30, 30, 29, 29, 29, 28, 28, 27, 27, 27, 26, 26, 25], dtype = np.float)
blue = blue / 255
print(blue.shape)
N = 254
vals = np.ones((N, 4))
vals[:, 0] = red
vals[:, 1] = green
vals[:, 2] = blue
newcmp = ListedColormap(vals)
a = np.load("prec_pred.npy")
print(a[900:4600, 900:4600].max(), a[900:4600, 900:4600].min())
plt.imsave("new_prec_glob.png", a, vmin=0, vmax=10, cmap=newcmp