-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
147 lines (108 loc) · 5.09 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import time,os
import torch
import numpy as np
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import AdamW, get_linear_schedule_with_warmup
from sklearn.model_selection import train_test_split
import argparse
import pandas as pd
import torch.nn as nn
from data.dataset import preprocessing,preprocess_single_sentence
from model.BertCRF import BertCRF
import random
from utils.metric import Metrics
from sklearn.metrics import f1_score,accuracy_score,recall_score
import yaml
import matplotlib.pyplot as plt
import json
import warnings
warnings.filterwarnings("ignore")
def seed_anything(seed_value):
np.random.seed(seed_value)
random.seed(seed_value)
os.environ['PYTHONHASHSEED'] = str(seed_value) # 为了禁止hash随机化,使得实验可复现。
torch.manual_seed(seed_value) # 为CPU设置随机种子
torch.cuda.manual_seed(seed_value) # 为当前GPU设置随机种子(只用一块GPU)
torch.cuda.manual_seed_all(seed_value) # 为所有GPU设置随机种子(多块GPU)
torch.backends.cudnn.deterministic = True
def infer(model,device,tagset_path,tokenizer_path,MAX_LEN):
model.eval()
tagset = []
with open(tagset_path, 'r', encoding='utf-8') as f:
tagset = json.load(f)
with torch.no_grad():
print(f'type your sentence. (just type q of nothing if you want to quid)')
inp = input()
while inp != 'q' and inp != '\n' and inp != 'q\n':
encoded_inp,masks = preprocess_single_sentence(inp,tokenizer_path,MAX_LEN)
encoded_inp = torch.tensor(encoded_inp).to(device).unsqueeze(0)
masks = (torch.tensor(masks) > 0.5).to(device).unsqueeze(0)
tag_seq = model.forward(encoded_inp,masks) #(b,s)
tag_seq = tag_seq.flatten().cpu().tolist()
masks = masks.flatten().cpu().tolist()
oup = ''
for i in range(len(inp)):
oup += f'({inp[i]},{tagset[tag_seq[i]]})-'
# print(f'({inp[i]},{tagset[tag_seq[i]]})')
oup = oup[:-1]
print(f'result: {oup}')
inp = input()
print(f'Have a nice day!')
# pred_list = None
# label_list = None
# mask_list = None
# with torch.no_grad():
# for _, batch in enumerate(test_dataloader):
# sentences,masks,tags = tuple(t.to(device) for t in batch)
# tag_seq = model.forward(sentences,masks) #(b,s)
# if pred_list == None:
# pred_list = tag_seq
# label_list = tags
# mask_list = masks
# else:
# pred_list = torch.concat((pred_list,tag_seq),0)
# label_list = torch.concat((label_list,tags),0)
# mask_list = torch.concat((mask_list,masks),0)
# pred_list = pred_list.cpu().flatten().tolist()
# label_list = label_list.cpu().flatten().tolist()
# mask_list = mask_list.cpu().flatten().tolist()
# eff_preds = []
# eff_labels = []
# for i in range(len(mask_list)):
# if mask_list[i] == True:
# eff_preds.append(pred_list[i])
# eff_labels.append(label_list[i])
# Metrics(eff_labels,eff_preds,tagset)
# acc = accuracy_score(eff_labels,eff_preds)
# recall = recall_score(eff_labels,eff_preds,average='macro')
# f1score = f1_score(eff_labels,eff_preds,average='macro')
# print(f'acc is: {acc}')
# print(f'recall is: {recall}')
# print(f'f1-socre is: {f1score}')
if __name__ == '__main__':
config_path = './config/infer.yaml'
with open(config_path,'r',encoding='utf-8') as f:
configs = yaml.load(f,Loader=yaml.FullLoader)
print(f'EXP Settings: ')
for k,v in configs.items():
print(f'{k}: {v}')
print(f'*'*30)
seed_anything(configs['seed'])
# # 读取测试数据
# test_sentences, test_masks, test_tag_lists = preprocessing(configs['test_path'],configs['MAX_LEN'],configs['tokenizer_path'],configs['tag2idx_path'])
# # 转化为tensor类型
# test_sentences = torch.tensor(test_sentences)
# test_masks = torch.tensor(test_masks) > 0.5 # 转为bool
# test_tag_lists = torch.tensor(test_tag_lists)
# # 创建DataLoader
# test_dataset = TensorDataset(test_sentences,test_masks,test_tag_lists)
# test_sampler = RandomSampler(test_dataset)
# test_dataloader = DataLoader(test_dataset,sampler=test_sampler,batch_size=configs['batch_size'],num_workers=configs['num_workers'])
# 加载模型
model = BertCRF(configs['types_of_tags'],configs['pretrained_bert'],configs['device'],configs['autoCRF'],configs['MAX_LEN'])
model.to(configs['device'])
state_dict = torch.load(configs['pretrained_ckpt'])
model.load_state_dict(state_dict)
print(f'Starting real-time inference...')
infer(model,configs['device'],configs['idx2tag_path'],configs['tokenizer_path'],configs['MAX_LEN'])
# test(model,test_dataloader,configs['device'],os.path.join('./weight',configs['name']),configs['idx2tag_path'])