-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy patheval.py
103 lines (85 loc) · 3.55 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import numpy as np
import os
from os import path as osp
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
import argparse
import time
import fnmatch
from model.net import DGCNet
from data.dataset import HPatchesDataset
from utils.evaluate import calculate_epe_hpatches, calculate_pck_hpatches
# Argument parsing
parser = argparse.ArgumentParser(description='DGC-Net')
# Paths
parser.add_argument('--csv-path', type=str, default='data/csv',
help='path to training transformation csv folder')
parser.add_argument('--image-data-path', type=str,
default='data/hpatches-geometry',
help='path to folder containing training images')
parser.add_argument('--model', type=str, default='dgc',
help='Model to use', choices=['dgc', 'dgcm'])
parser.add_argument('--metric', type=str, default='aepe',
help='Model to use', choices=['aepe', 'pck'])
parser.add_argument('--batch-size', type=int, default=1,
help='evaluation batch size')
parser.add_argument('--seed', type=int, default=1984, help='Pseudo-RNG seed')
args = parser.parse_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# Image normalisation
mean_vector = np.array([0.485, 0.456, 0.406])
std_vector = np.array([0.229, 0.224, 0.225])
normTransform = transforms.Normalize(mean_vector, std_vector)
dataset_transforms = transforms.Compose([
transforms.ToTensor(),
normTransform
])
# Model
checkpoint_fname = osp.join('pretrained_models', args.model, 'checkpoint.pth')
if not osp.isfile(checkpoint_fname):
raise ValueError('check the snapshots path')
if args.model == 'dgc':
net = DGCNet()
elif args.model == 'dgcm':
net = DGCNet(mask=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.load_state_dict(torch.load(checkpoint_fname, map_location=device)['state_dict'])
net = nn.DataParallel(net)
net.eval()
net = net.to(device)
with torch.no_grad():
number_of_scenes = 5
if (args.metric == 'aepe'):
res = []
jac = []
if (args.metric == 'pck'):
# create a threshold range
threshold_range = np.linspace(0.005, 0.1, num=200)
res = np.zeros((number_of_scenes, len(threshold_range)))
# loop over scenes (1-2, 1-3, 1-4, 1-5, 1-6)
for id, k in enumerate(range(2, number_of_scenes + 2)):
test_dataset = \
HPatchesDataset(csv_file=osp.join(args.csv_path,
'hpatches_1_{}.csv'.format(k)),
image_path_orig=args.image_data_path,
transforms=dataset_transforms)
test_dataloader = DataLoader(test_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=4)
if (args.metric == 'aepe'):
epe_arr = calculate_epe_hpatches(net,
test_dataloader,
device)
res.append(np.mean(epe_arr))
if (args.metric == 'pck'):
for t_id, threshold in enumerate(threshold_range):
res[id, t_id] = calculate_pck_hpatches(net,
test_dataloader,
device,
alpha=threshold)
print(res)