forked from kohya-ss/musubi-tuner
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhv_train.py
1719 lines (1477 loc) · 75.6 KB
/
hv_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import ast
import asyncio
from datetime import datetime
import gc
import importlib
import argparse
import math
import os
import pathlib
import re
import sys
import random
import time
import json
from multiprocessing import Value
from typing import Any, Dict, List, Optional
import accelerate
import numpy as np
from packaging.version import Version
import huggingface_hub
import toml
import torch
from tqdm import tqdm
from accelerate.utils import set_seed
from accelerate import Accelerator, InitProcessGroupKwargs, DistributedDataParallelKwargs
from safetensors.torch import load_file, save_file
import transformers
from diffusers.optimization import (
SchedulerType as DiffusersSchedulerType,
TYPE_TO_SCHEDULER_FUNCTION as DIFFUSERS_TYPE_TO_SCHEDULER_FUNCTION,
)
from transformers.optimization import SchedulerType, TYPE_TO_SCHEDULER_FUNCTION
from dataset import config_utils
from hunyuan_model.models import load_transformer, get_rotary_pos_embed_by_shape
import hunyuan_model.text_encoder as text_encoder_module
from hunyuan_model.vae import load_vae
import hunyuan_model.vae as vae_module
from modules.scheduling_flow_match_discrete import FlowMatchDiscreteScheduler
import networks.lora as lora_module
from dataset.config_utils import BlueprintGenerator, ConfigSanitizer
import logging
from utils import huggingface_utils, model_utils, train_utils, sai_model_spec
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
BASE_MODEL_VERSION_HUNYUAN_VIDEO = "hunyuan_video"
# TODO make separate file for some functions to commonize with other scripts
def clean_memory_on_device(device: torch.device):
r"""
Clean memory on the specified device, will be called from training scripts.
"""
gc.collect()
# device may "cuda" or "cuda:0", so we need to check the type of device
if device.type == "cuda":
torch.cuda.empty_cache()
if device.type == "xpu":
torch.xpu.empty_cache()
if device.type == "mps":
torch.mps.empty_cache()
# for collate_fn: epoch and step is multiprocessing.Value
class collator_class:
def __init__(self, epoch, step, dataset):
self.current_epoch = epoch
self.current_step = step
self.dataset = dataset # not used if worker_info is not None, in case of multiprocessing
def __call__(self, examples):
worker_info = torch.utils.data.get_worker_info()
# worker_info is None in the main process
if worker_info is not None:
dataset = worker_info.dataset
else:
dataset = self.dataset
# set epoch and step
dataset.set_current_epoch(self.current_epoch.value)
dataset.set_current_step(self.current_step.value)
return examples[0]
def prepare_accelerator(args: argparse.Namespace) -> Accelerator:
"""
DeepSpeed is not supported in this script currently.
"""
if args.logging_dir is None:
logging_dir = None
else:
log_prefix = "" if args.log_prefix is None else args.log_prefix
logging_dir = args.logging_dir + "/" + log_prefix + time.strftime("%Y%m%d%H%M%S", time.localtime())
if args.log_with is None:
if logging_dir is not None:
log_with = "tensorboard"
else:
log_with = None
else:
log_with = args.log_with
if log_with in ["tensorboard", "all"]:
if logging_dir is None:
raise ValueError(
"logging_dir is required when log_with is tensorboard / Tensorboardを使う場合、logging_dirを指定してください"
)
if log_with in ["wandb", "all"]:
try:
import wandb
except ImportError:
raise ImportError("No wandb / wandb がインストールされていないようです")
if logging_dir is not None:
os.makedirs(logging_dir, exist_ok=True)
os.environ["WANDB_DIR"] = logging_dir
if args.wandb_api_key is not None:
wandb.login(key=args.wandb_api_key)
kwargs_handlers = [
(
InitProcessGroupKwargs(
backend="gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl",
init_method=(
"env://?use_libuv=False" if os.name == "nt" and Version(torch.__version__) >= Version("2.4.0") else None
),
timeout=datetime.timedelta(minutes=args.ddp_timeout) if args.ddp_timeout else None,
)
if torch.cuda.device_count() > 1
else None
),
(
DistributedDataParallelKwargs(
gradient_as_bucket_view=args.ddp_gradient_as_bucket_view, static_graph=args.ddp_static_graph
)
if args.ddp_gradient_as_bucket_view or args.ddp_static_graph
else None
),
]
kwargs_handlers = [i for i in kwargs_handlers if i is not None]
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=log_with,
project_dir=logging_dir,
kwargs_handlers=kwargs_handlers,
)
print("accelerator device:", accelerator.device)
return accelerator
def line_to_prompt_dict(line: str) -> dict:
# subset of gen_img_diffusers
prompt_args = line.split(" --")
prompt_dict = {}
prompt_dict["prompt"] = prompt_args[0]
for parg in prompt_args:
try:
m = re.match(r"w (\d+)", parg, re.IGNORECASE)
if m:
prompt_dict["width"] = int(m.group(1))
continue
m = re.match(r"h (\d+)", parg, re.IGNORECASE)
if m:
prompt_dict["height"] = int(m.group(1))
continue
m = re.match(r"f (\d+)", parg, re.IGNORECASE)
if m:
prompt_dict["frame_count"] = int(m.group(1))
continue
m = re.match(r"d (\d+)", parg, re.IGNORECASE)
if m:
prompt_dict["seed"] = int(m.group(1))
continue
m = re.match(r"s (\d+)", parg, re.IGNORECASE)
if m: # steps
prompt_dict["sample_steps"] = max(1, min(1000, int(m.group(1))))
continue
# m = re.match(r"l ([\d\.]+)", parg, re.IGNORECASE)
# if m: # scale
# prompt_dict["scale"] = float(m.group(1))
# continue
# m = re.match(r"n (.+)", parg, re.IGNORECASE)
# if m: # negative prompt
# prompt_dict["negative_prompt"] = m.group(1)
# continue
except ValueError as ex:
logger.error(f"Exception in parsing / 解析エラー: {parg}")
logger.error(ex)
return prompt_dict
def load_prompts(prompt_file: str) -> list[Dict]:
# read prompts
if prompt_file.endswith(".txt"):
with open(prompt_file, "r", encoding="utf-8") as f:
lines = f.readlines()
prompts = [line.strip() for line in lines if len(line.strip()) > 0 and line[0] != "#"]
elif prompt_file.endswith(".toml"):
with open(prompt_file, "r", encoding="utf-8") as f:
data = toml.load(f)
prompts = [dict(**data["prompt"], **subset) for subset in data["prompt"]["subset"]]
elif prompt_file.endswith(".json"):
with open(prompt_file, "r", encoding="utf-8") as f:
prompts = json.load(f)
# preprocess prompts
for i in range(len(prompts)):
prompt_dict = prompts[i]
if isinstance(prompt_dict, str):
prompt_dict = line_to_prompt_dict(prompt_dict)
prompts[i] = prompt_dict
assert isinstance(prompt_dict, dict)
# Adds an enumerator to the dict based on prompt position. Used later to name image files. Also cleanup of extra data in original prompt dict.
prompt_dict["enum"] = i
prompt_dict.pop("subset", None)
return prompts
def compute_density_for_timestep_sampling(
weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
):
"""Compute the density for sampling the timesteps when doing SD3 training.
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.
SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
"""
if weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
u = torch.nn.functional.sigmoid(u)
elif weighting_scheme == "mode":
u = torch.rand(size=(batch_size,), device="cpu")
u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
else:
u = torch.rand(size=(batch_size,), device="cpu")
return u
def get_sigmas(noise_scheduler, timesteps, device, n_dim=4, dtype=torch.float32):
sigmas = noise_scheduler.sigmas.to(device=device, dtype=dtype)
schedule_timesteps = noise_scheduler.timesteps.to(device)
timesteps = timesteps.to(device)
# if sum([(schedule_timesteps == t) for t in timesteps]) < len(timesteps):
if any([(schedule_timesteps == t).sum() == 0 for t in timesteps]):
# raise ValueError("Some timesteps are not in the schedule / 一部のtimestepsがスケジュールに含まれていません")
# round to nearest timestep
logger.warning("Some timesteps are not in the schedule / 一部のtimestepsがスケジュールに含まれていません")
step_indices = [torch.argmin(torch.abs(schedule_timesteps - t)).item() for t in timesteps]
else:
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
def compute_loss_weighting_for_sd3(weighting_scheme: str, noise_scheduler, timesteps, device, dtype):
"""Computes loss weighting scheme for SD3 training.
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.
SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
"""
if weighting_scheme == "sigma_sqrt" or weighting_scheme == "cosmap":
sigmas = get_sigmas(noise_scheduler, timesteps, device, n_dim=5, dtype=dtype)
if weighting_scheme == "sigma_sqrt":
weighting = (sigmas**-2.0).float()
else:
bot = 1 - 2 * sigmas + 2 * sigmas**2
weighting = 2 / (math.pi * bot)
else:
weighting = None # torch.ones_like(sigmas)
return weighting
class FineTuningTrainer:
def __init__(self):
pass
def process_sample_prompts(
self,
args: argparse.Namespace,
accelerator: Accelerator,
sample_prompts: str,
text_encoder1: str,
text_encoder2: str,
fp8_llm: bool,
):
logger.info(f"cache Text Encoder outputs for sample prompt: {sample_prompts}")
prompts = load_prompts(sample_prompts)
def encode_for_text_encoder(text_encoder, is_llm=True):
sample_prompts_te_outputs = {} # (prompt) -> (embeds, mask)
with accelerator.autocast(), torch.no_grad():
for prompt_dict in prompts:
for p in [prompt_dict.get("prompt", "")]:
if p not in sample_prompts_te_outputs:
logger.info(f"cache Text Encoder outputs for prompt: {p}")
data_type = "video"
text_inputs = text_encoder.text2tokens(p, data_type=data_type)
prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type)
sample_prompts_te_outputs[p] = (prompt_outputs.hidden_state, prompt_outputs.attention_mask)
return sample_prompts_te_outputs
# Load Text Encoder 1 and encode
text_encoder_dtype = torch.float16 if args.text_encoder_dtype is None else model_utils.str_to_dtype(args.text_encoder_dtype)
logger.info(f"loading text encoder 1: {text_encoder1}")
text_encoder_1 = text_encoder_module.load_text_encoder_1(text_encoder1, accelerator.device, fp8_llm, text_encoder_dtype)
logger.info("encoding with Text Encoder 1")
te_outputs_1 = encode_for_text_encoder(text_encoder_1)
del text_encoder_1
# Load Text Encoder 2 and encode
logger.info(f"loading text encoder 2: {text_encoder2}")
text_encoder_2 = text_encoder_module.load_text_encoder_2(text_encoder2, accelerator.device, text_encoder_dtype)
logger.info("encoding with Text Encoder 2")
te_outputs_2 = encode_for_text_encoder(text_encoder_2, is_llm=False)
del text_encoder_2
# prepare sample parameters
sample_parameters = []
for prompt_dict in prompts:
prompt_dict_copy = prompt_dict.copy()
p = prompt_dict.get("prompt", "")
prompt_dict_copy["llm_embeds"] = te_outputs_1[p][0]
prompt_dict_copy["llm_mask"] = te_outputs_1[p][1]
prompt_dict_copy["clipL_embeds"] = te_outputs_2[p][0]
prompt_dict_copy["clipL_mask"] = te_outputs_2[p][1]
sample_parameters.append(prompt_dict_copy)
clean_memory_on_device(accelerator.device)
return sample_parameters
def get_optimizer(self, args, trainable_params: list[torch.nn.Parameter]) -> tuple[str, str, torch.optim.Optimizer]:
# adamw, adamw8bit, adafactor
optimizer_type = args.optimizer_type.lower()
# split optimizer_type and optimizer_args
optimizer_kwargs = {}
if args.optimizer_args is not None and len(args.optimizer_args) > 0:
for arg in args.optimizer_args:
key, value = arg.split("=")
value = ast.literal_eval(value)
optimizer_kwargs[key] = value
lr = args.learning_rate
optimizer = None
optimizer_class = None
if optimizer_type.endswith("8bit".lower()):
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError("No bitsandbytes / bitsandbytesがインストールされていないようです")
if optimizer_type == "AdamW8bit".lower():
logger.info(f"use 8-bit AdamW optimizer | {optimizer_kwargs}")
optimizer_class = bnb.optim.AdamW8bit
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
elif optimizer_type == "Adafactor".lower():
# Adafactor: check relative_step and warmup_init
if "relative_step" not in optimizer_kwargs:
optimizer_kwargs["relative_step"] = True # default
if not optimizer_kwargs["relative_step"] and optimizer_kwargs.get("warmup_init", False):
logger.info(
f"set relative_step to True because warmup_init is True / warmup_initがTrueのためrelative_stepをTrueにします"
)
optimizer_kwargs["relative_step"] = True
logger.info(f"use Adafactor optimizer | {optimizer_kwargs}")
if optimizer_kwargs["relative_step"]:
logger.info(f"relative_step is true / relative_stepがtrueです")
if lr != 0.0:
logger.warning(f"learning rate is used as initial_lr / 指定したlearning rateはinitial_lrとして使用されます")
args.learning_rate = None
if args.lr_scheduler != "adafactor":
logger.info(f"use adafactor_scheduler / スケジューラにadafactor_schedulerを使用します")
args.lr_scheduler = f"adafactor:{lr}" # ちょっと微妙だけど
lr = None
else:
if args.max_grad_norm != 0.0:
logger.warning(
f"because max_grad_norm is set, clip_grad_norm is enabled. consider set to 0 / max_grad_normが設定されているためclip_grad_normが有効になります。0に設定して無効にしたほうがいいかもしれません"
)
if args.lr_scheduler != "constant_with_warmup":
logger.warning(f"constant_with_warmup will be good / スケジューラはconstant_with_warmupが良いかもしれません")
if optimizer_kwargs.get("clip_threshold", 1.0) != 1.0:
logger.warning(f"clip_threshold=1.0 will be good / clip_thresholdは1.0が良いかもしれません")
optimizer_class = transformers.optimization.Adafactor
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
elif optimizer_type == "AdamW".lower():
logger.info(f"use AdamW optimizer | {optimizer_kwargs}")
optimizer_class = torch.optim.AdamW
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
if optimizer is None:
# 任意のoptimizerを使う
case_sensitive_optimizer_type = args.optimizer_type # not lower
logger.info(f"use {case_sensitive_optimizer_type} | {optimizer_kwargs}")
if "." not in case_sensitive_optimizer_type: # from torch.optim
optimizer_module = torch.optim
else: # from other library
values = case_sensitive_optimizer_type.split(".")
optimizer_module = importlib.import_module(".".join(values[:-1]))
case_sensitive_optimizer_type = values[-1]
optimizer_class = getattr(optimizer_module, case_sensitive_optimizer_type)
optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)
# for logging
optimizer_name = optimizer_class.__module__ + "." + optimizer_class.__name__
optimizer_args = ",".join([f"{k}={v}" for k, v in optimizer_kwargs.items()])
# get train and eval functions
if hasattr(optimizer, "train") and callable(optimizer.train):
train_fn = optimizer.train
eval_fn = optimizer.eval
else:
train_fn = lambda: None
eval_fn = lambda: None
return optimizer_name, optimizer_args, optimizer, train_fn, eval_fn
def is_schedulefree_optimizer(self, optimizer: torch.optim.Optimizer, args: argparse.Namespace) -> bool:
return args.optimizer_type.lower().endswith("schedulefree".lower()) # or args.optimizer_schedulefree_wrapper
def get_dummy_scheduler(optimizer: torch.optim.Optimizer) -> Any:
# dummy scheduler for schedulefree optimizer. supports only empty step(), get_last_lr() and optimizers.
# this scheduler is used for logging only.
# this isn't be wrapped by accelerator because of this class is not a subclass of torch.optim.lr_scheduler._LRScheduler
class DummyScheduler:
def __init__(self, optimizer: torch.optim.Optimizer):
self.optimizer = optimizer
def step(self):
pass
def get_last_lr(self):
return [group["lr"] for group in self.optimizer.param_groups]
return DummyScheduler(optimizer)
def get_scheduler(self, args, optimizer: torch.optim.Optimizer, num_processes: int):
"""
Unified API to get any scheduler from its name.
"""
# if schedulefree optimizer, return dummy scheduler
if self.is_schedulefree_optimizer(optimizer, args):
return self.get_dummy_scheduler(optimizer)
name = args.lr_scheduler
num_training_steps = args.max_train_steps * num_processes # * args.gradient_accumulation_steps
num_warmup_steps: Optional[int] = (
int(args.lr_warmup_steps * num_training_steps) if isinstance(args.lr_warmup_steps, float) else args.lr_warmup_steps
)
num_decay_steps: Optional[int] = (
int(args.lr_decay_steps * num_training_steps) if isinstance(args.lr_decay_steps, float) else args.lr_decay_steps
)
num_stable_steps = num_training_steps - num_warmup_steps - num_decay_steps
num_cycles = args.lr_scheduler_num_cycles
power = args.lr_scheduler_power
timescale = args.lr_scheduler_timescale
min_lr_ratio = args.lr_scheduler_min_lr_ratio
lr_scheduler_kwargs = {} # get custom lr_scheduler kwargs
if args.lr_scheduler_args is not None and len(args.lr_scheduler_args) > 0:
for arg in args.lr_scheduler_args:
key, value = arg.split("=")
value = ast.literal_eval(value)
lr_scheduler_kwargs[key] = value
def wrap_check_needless_num_warmup_steps(return_vals):
if num_warmup_steps is not None and num_warmup_steps != 0:
raise ValueError(f"{name} does not require `num_warmup_steps`. Set None or 0.")
return return_vals
# using any lr_scheduler from other library
if args.lr_scheduler_type:
lr_scheduler_type = args.lr_scheduler_type
logger.info(f"use {lr_scheduler_type} | {lr_scheduler_kwargs} as lr_scheduler")
if "." not in lr_scheduler_type: # default to use torch.optim
lr_scheduler_module = torch.optim.lr_scheduler
else:
values = lr_scheduler_type.split(".")
lr_scheduler_module = importlib.import_module(".".join(values[:-1]))
lr_scheduler_type = values[-1]
lr_scheduler_class = getattr(lr_scheduler_module, lr_scheduler_type)
lr_scheduler = lr_scheduler_class(optimizer, **lr_scheduler_kwargs)
return lr_scheduler
if name.startswith("adafactor"):
assert (
type(optimizer) == transformers.optimization.Adafactor
), f"adafactor scheduler must be used with Adafactor optimizer / adafactor schedulerはAdafactorオプティマイザと同時に使ってください"
initial_lr = float(name.split(":")[1])
# logger.info(f"adafactor scheduler init lr {initial_lr}")
return wrap_check_needless_num_warmup_steps(transformers.optimization.AdafactorSchedule(optimizer, initial_lr))
if name == DiffusersSchedulerType.PIECEWISE_CONSTANT.value:
name = DiffusersSchedulerType(name)
schedule_func = DIFFUSERS_TYPE_TO_SCHEDULER_FUNCTION[name]
return schedule_func(optimizer, **lr_scheduler_kwargs) # step_rules and last_epoch are given as kwargs
name = SchedulerType(name)
schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return wrap_check_needless_num_warmup_steps(schedule_func(optimizer, **lr_scheduler_kwargs))
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, **lr_scheduler_kwargs)
if name == SchedulerType.INVERSE_SQRT:
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, timescale=timescale, **lr_scheduler_kwargs)
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles,
**lr_scheduler_kwargs,
)
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
power=power,
**lr_scheduler_kwargs,
)
if name == SchedulerType.COSINE_WITH_MIN_LR:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles / 2,
min_lr_rate=min_lr_ratio,
**lr_scheduler_kwargs,
)
# these schedulers do not require `num_decay_steps`
if name == SchedulerType.LINEAR or name == SchedulerType.COSINE:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
**lr_scheduler_kwargs,
)
# All other schedulers require `num_decay_steps`
if num_decay_steps is None:
raise ValueError(f"{name} requires `num_decay_steps`, please provide that argument.")
if name == SchedulerType.WARMUP_STABLE_DECAY:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_stable_steps=num_stable_steps,
num_decay_steps=num_decay_steps,
num_cycles=num_cycles / 2,
min_lr_ratio=min_lr_ratio if min_lr_ratio is not None else 0.0,
**lr_scheduler_kwargs,
)
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_decay_steps=num_decay_steps,
**lr_scheduler_kwargs,
)
def resume_from_local_or_hf_if_specified(self, accelerator: Accelerator, args: argparse.Namespace) -> bool:
if not args.resume:
return False
if not args.resume_from_huggingface:
logger.info(f"resume training from local state: {args.resume}")
accelerator.load_state(args.resume)
return True
logger.info(f"resume training from huggingface state: {args.resume}")
repo_id = args.resume.split("/")[0] + "/" + args.resume.split("/")[1]
path_in_repo = "/".join(args.resume.split("/")[2:])
revision = None
repo_type = None
if ":" in path_in_repo:
divided = path_in_repo.split(":")
if len(divided) == 2:
path_in_repo, revision = divided
repo_type = "model"
else:
path_in_repo, revision, repo_type = divided
logger.info(f"Downloading state from huggingface: {repo_id}/{path_in_repo}@{revision}")
list_files = huggingface_utils.list_dir(
repo_id=repo_id,
subfolder=path_in_repo,
revision=revision,
token=args.huggingface_token,
repo_type=repo_type,
)
async def download(filename) -> str:
def task():
return huggingface_hub.hf_hub_download(
repo_id=repo_id,
filename=filename,
revision=revision,
repo_type=repo_type,
token=args.huggingface_token,
)
return await asyncio.get_event_loop().run_in_executor(None, task)
loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*[download(filename=filename.rfilename) for filename in list_files]))
if len(results) == 0:
raise ValueError(
"No files found in the specified repo id/path/revision / 指定されたリポジトリID/パス/リビジョンにファイルが見つかりませんでした"
)
dirname = os.path.dirname(results[0])
accelerator.load_state(dirname)
return True
def sample_images(self, accelerator, args, epoch, global_step, device, vae, transformer, sample_parameters):
pass
def get_noisy_model_input_and_timesteps(
self,
args: argparse.Namespace,
noise: torch.Tensor,
latents: torch.Tensor,
noise_scheduler: FlowMatchDiscreteScheduler,
device: torch.device,
dtype: torch.dtype,
):
batch_size = noise.shape[0]
if args.timestep_sampling == "uniform" or args.timestep_sampling == "sigmoid" or args.timestep_sampling == "shift":
if args.timestep_sampling == "uniform" or args.timestep_sampling == "sigmoid":
# Simple random t-based noise sampling
if args.timestep_sampling == "sigmoid":
t = torch.sigmoid(args.sigmoid_scale * torch.randn((batch_size,), device=device))
else:
t = torch.rand((batch_size,), device=device)
elif args.timestep_sampling == "shift":
shift = args.discrete_flow_shift
logits_norm = torch.randn(batch_size, device=device)
logits_norm = logits_norm * args.sigmoid_scale # larger scale for more uniform sampling
t = logits_norm.sigmoid()
t = (t * shift) / (1 + (shift - 1) * t)
t_min = args.min_timestep if args.min_timestep is not None else 0
t_max = args.max_timestep if args.max_timestep is not None else 1000.0
t_min /= 1000.0
t_max /= 1000.0
t = t * (t_max - t_min) + t_min # scale to [t_min, t_max], default [0, 1]
timesteps = t * 1000.0
t = t.view(-1, 1, 1, 1, 1)
noisy_model_input = (1 - t) * latents + t * noise
timesteps += 1 # 1 to 1000
else:
# Sample a random timestep for each image
# for weighting schemes where we sample timesteps non-uniformly
u = compute_density_for_timestep_sampling(
weighting_scheme=args.weighting_scheme,
batch_size=batch_size,
logit_mean=args.logit_mean,
logit_std=args.logit_std,
mode_scale=args.mode_scale,
)
# indices = (u * noise_scheduler.config.num_train_timesteps).long()
t_min = args.min_timestep if args.min_timestep is not None else 0
t_max = args.max_timestep if args.max_timestep is not None else 1000
indices = (u * (t_max - t_min) + t_min).long()
timesteps = noise_scheduler.timesteps[indices].to(device=device) # 1 to 1000
# Add noise according to flow matching.
sigmas = get_sigmas(noise_scheduler, timesteps, device, n_dim=latents.ndim, dtype=dtype)
noisy_model_input = sigmas * noise + (1.0 - sigmas) * latents
return noisy_model_input, timesteps
def train(self, args):
if args.seed is None:
args.seed = random.randint(0, 2**32)
set_seed(args.seed)
# Load dataset config
blueprint_generator = BlueprintGenerator(ConfigSanitizer())
logger.info(f"Load dataset config from {args.dataset_config}")
user_config = config_utils.load_user_config(args.dataset_config)
blueprint = blueprint_generator.generate(user_config, args)
train_dataset_group = config_utils.generate_dataset_group_by_blueprint(blueprint.dataset_group, training=True)
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collator = collator_class(current_epoch, current_step, ds_for_collator)
# prepare accelerator
logger.info("preparing accelerator")
accelerator = prepare_accelerator(args)
is_main_process = accelerator.is_main_process
# prepare dtype
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# HunyuanVideo specific
vae_dtype = torch.float16 if args.vae_dtype is None else model_utils.str_to_dtype(args.vae_dtype)
# get embedding for sampling images
sample_parameters = vae = None
if args.sample_prompts:
sample_parameters = self.process_sample_prompts(
args, accelerator, args.sample_prompts, args.text_encoder1, args.text_encoder2, args.fp8_llm
)
# Load VAE model for sampling images: VAE is loaded to cpu to save gpu memory
vae, _, s_ratio, t_ratio = load_vae(vae_dtype=vae_dtype, device="cpu", vae_path=args.vae)
vae.requires_grad_(False)
vae.eval()
if args.vae_chunk_size is not None:
vae.set_chunk_size_for_causal_conv_3d(args.vae_chunk_size)
logger.info(f"Set chunk_size to {args.vae_chunk_size} for CausalConv3d in VAE")
if args.vae_spatial_tile_sample_min_size is not None:
vae.enable_spatial_tiling(True)
vae.tile_sample_min_size = args.vae_spatial_tile_sample_min_size
vae.tile_latent_min_size = args.vae_spatial_tile_sample_min_size // 8
elif args.vae_tiling:
vae.enable_spatial_tiling(True)
# load DiT model
blocks_to_swap = args.blocks_to_swap if args.blocks_to_swap else 0
loading_device = "cpu" if blocks_to_swap > 0 else accelerator.device
logger.info(f"Loading DiT model from {args.dit}")
if args.sdpa:
attn_mode = "torch"
elif args.flash_attn:
attn_mode = "flash"
elif args.sage_attn:
attn_mode = "sageattn"
elif args.xformers:
attn_mode = "xformers"
else:
raise ValueError(
f"either --sdpa, --flash-attn, --sage-attn or --xformers must be specified / --sdpa, --flash-attn, --sage-attn, --xformersのいずれかを指定してください"
)
transformer = load_transformer(args.dit, attn_mode, args.split_attn, loading_device, None) # load as is
if blocks_to_swap > 0:
logger.info(f"enable swap {blocks_to_swap} blocks to CPU from device: {accelerator.device}")
transformer.enable_block_swap(blocks_to_swap, accelerator.device, supports_backward=True)
transformer.move_to_device_except_swap_blocks(accelerator.device)
if args.img_in_txt_in_offloading:
logger.info("Enable offloading img_in and txt_in to CPU")
transformer.enable_img_in_txt_in_offloading()
if args.gradient_checkpointing:
transformer.enable_gradient_checkpointing()
# prepare optimizer, data loader etc.
accelerator.print("prepare optimizer, data loader etc.")
transformer.requires_grad_(False)
if accelerator.is_main_process:
accelerator.print(
f"Trainable modules '{args.trainable_modules}'."
)
for name, param in transformer.named_parameters():
for trainable_module_name in args.trainable_modules:
if trainable_module_name in name:
param.requires_grad = True
break
total_params = list(transformer.parameters())
trainable_params = list(filter(lambda p: p.requires_grad, transformer.parameters()))
logger.info(f"number of trainable parameters: {sum(p.numel() for p in trainable_params) / 1e6} M, total paramters: {sum(p.numel() for p in total_params) / 1e6} M")
optimizer_name, optimizer_args, optimizer, optimizer_train_fn, optimizer_eval_fn = self.get_optimizer(
args, trainable_params
)
# prepare dataloader
# num workers for data loader: if 0, persistent_workers is not available
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collator,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# calculate max_train_steps
if args.max_train_epochs is not None:
args.max_train_steps = args.max_train_epochs * math.ceil(
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
)
accelerator.print(
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
)
# send max_train_steps to train_dataset_group
train_dataset_group.set_max_train_steps(args.max_train_steps)
# prepare lr_scheduler
lr_scheduler = self.get_scheduler(args, optimizer, accelerator.num_processes)
# prepare training model. accelerator does some magic here
# experimental feature: train the model with gradients in fp16/bf16
dit_dtype = torch.float32
if args.full_fp16:
assert (
args.mixed_precision == "fp16"
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
accelerator.print("enable full fp16 training.")
dit_weight_dtype = torch.float16
elif args.full_bf16:
assert (
args.mixed_precision == "bf16"
), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。"
accelerator.print("enable full bf16 training.")
dit_weight_dtype = torch.bfloat16
else:
dit_weight_dtype = torch.float32
# TODO add fused optimizer and stochastic rounding
# cast model to dit_weight_dtype
# if dit_dtype != dit_weight_dtype:
logger.info(f"casting model to {dit_weight_dtype}")
transformer.to(dit_weight_dtype)
if blocks_to_swap > 0:
transformer = accelerator.prepare(transformer, device_placement=[not blocks_to_swap > 0])
accelerator.unwrap_model(transformer).move_to_device_except_swap_blocks(accelerator.device) # reduce peak memory usage
accelerator.unwrap_model(transformer).prepare_block_swap_before_forward()
else:
transformer = accelerator.prepare(transformer)
optimizer, train_dataloader, lr_scheduler = accelerator.prepare(optimizer, train_dataloader, lr_scheduler)
transformer.train()
if args.full_fp16:
# patch accelerator for fp16 training
# def patch_accelerator_for_fp16_training(accelerator):
org_unscale_grads = accelerator.scaler._unscale_grads_
def _unscale_grads_replacer(optimizer, inv_scale, found_inf, allow_fp16):
return org_unscale_grads(optimizer, inv_scale, found_inf, True)
accelerator.scaler._unscale_grads_ = _unscale_grads_replacer
# resume from local or huggingface. accelerator.step is set
self.resume_from_local_or_hf_if_specified(accelerator, args) # accelerator.load_state(args.resume)
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# 学習する
# total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
accelerator.print("running training / 学習開始")
accelerator.print(f" num train items / 学習画像、動画数: {train_dataset_group.num_train_items}")
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
accelerator.print(
f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}"
)
# accelerator.print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
if accelerator.is_main_process:
init_kwargs = {}
if args.wandb_run_name:
init_kwargs["wandb"] = {"name": args.wandb_run_name}
if args.log_tracker_config is not None:
init_kwargs = toml.load(args.log_tracker_config)
accelerator.init_trackers(
"hunyuan_video_ft" if args.log_tracker_name is None else args.log_tracker_name,
config=train_utils.get_sanitized_config_or_none(args),
init_kwargs=init_kwargs,
)
# TODO skip until initial step
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
epoch_to_start = 0
global_step = 0
noise_scheduler = FlowMatchDiscreteScheduler(shift=args.discrete_flow_shift, reverse=True, solver="euler")
loss_recorder = train_utils.LossRecorder()
del train_dataset_group
# function for saving/removing
def save_model(ckpt_name: str, unwrapped_nw, steps, epoch_no, force_sync_upload=False):
os.makedirs(args.output_dir, exist_ok=True)
ckpt_file = os.path.join(args.output_dir, ckpt_name)
accelerator.print(f"\nsaving checkpoint: {ckpt_file}")
title = args.metadata_title if args.metadata_title is not None else args.output_name
if args.min_timestep is not None or args.max_timestep is not None:
min_time_step = args.min_timestep if args.min_timestep is not None else 0
max_time_step = args.max_timestep if args.max_timestep is not None else 1000
md_timesteps = (min_time_step, max_time_step)
else:
md_timesteps = None
sai_metadata = sai_model_spec.build_metadata(
None,
time.time(),
title,
None,
args.metadata_author,
args.metadata_description,
args.metadata_license,
args.metadata_tags,
timesteps=md_timesteps,
is_lora=False,
)
save_file(unwrapped_nw.state_dict(), ckpt_file, sai_metadata)
if args.huggingface_repo_id is not None:
huggingface_utils.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload)
def remove_model(old_ckpt_name):
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
if os.path.exists(old_ckpt_file):
accelerator.print(f"removing old checkpoint: {old_ckpt_file}")
os.remove(old_ckpt_file)
# For --sample_at_first
optimizer_eval_fn()
self.sample_images(accelerator, args, 0, global_step, accelerator.device, vae, transformer, sample_parameters)
optimizer_train_fn()