-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpadloc_stats.py
101 lines (68 loc) · 2.66 KB
/
padloc_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 9 18:11:16 2023
@author: ahmed
"""
#########################################
import pandas as pd
import glob
import os
import argparse
import openpyxl
#########################################
my_parser = argparse.ArgumentParser(description='Welcome!')
print("example: $ python pad_loc_stats.py -i ./txt -p Corynebacterium")
my_parser.add_argument('-i','--input_dir',
action='store',
metavar='input_dir',
type=str,
help="input_dir")
my_parser.add_argument('-p','--prefix',
action='store',
metavar='prefix',
type=str,
help="prefix")
###########################################
# Execute the parse_args() method
args = my_parser.parse_args()
###########################################
path = args.input_dir
ff = args.prefix
############################################
#path = "/media/ahmed/CC69-620B6/00_Ph.D/DATA_results/0_accolens_prop_database_work/0_analysis/27_padLOC_immunity"
#os.chdir(path)
all_files = glob.glob(os.path.join(path, "*.csv"))
df = pd.concat((pd.read_csv(f) for f in all_files), ignore_index=True)
df['freq'] = df.groupby('system')['system'].transform('count')
df1 = df[['system', 'freq']]
df1 = df1.drop_duplicates(subset=['system'])
#plot = df1.plot.pie(y='system', figsize=(7, 7))
#file_name = 'CM.xlsx'
df1['relative_freq'] = df1[['freq']].div(int(len(all_files)), axis=0)
df1 = df1.sort_values('relative_freq', ascending=False)
os.chdir(path)
df1.to_csv("%s_frequency.xlsx"%(ff),index=False,sep=',')
########################################################
#path = "/media/ahmed/CC69-620B6/00_Ph.D/DATA_results/0_accolens_prop_database_work/0_analysis/27_padLOC_immunity"
#os.chdir(path)
file_names = os.listdir()
###########################################
data_frames = []
for file_name in file_names:
if file_name.endswith(".csv"):
df3 = pd.read_csv(file_name)
df3 = df3[["system"]]
df3 = df3.drop_duplicates(subset=['system'])
df3 = df3.reset_index(drop=True)
df3 = df3.rename(columns={"system": str(file_name)[:-11]})
df3 = df3.T
data_frames.append(df3)
merged = pd.concat(data_frames, axis=0)
melted = pd.melt(merged.reset_index(), id_vars='index')
melted = melted.dropna(subset=['value'])
melted = melted.drop(melted.columns[1], axis=1)
melted = melted.sort_values('index')
matrix = pd.crosstab(melted['index'], melted['value'])
#file_name = 'Matrix.xlsx'
matrix.to_csv("%s_presence_absence.xlsx"%(ff),index=True,sep=',')