-
Notifications
You must be signed in to change notification settings - Fork 6
/
basketCallWithCVA.py
127 lines (109 loc) · 4.64 KB
/
basketCallWithCVA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import xvaEquation as eqn
from solver import BSDESolver
from XvaSolver import XvaSolver
import RecursiveEquation as receqn
import munch
import pandas as pd
if __name__ == "__main__":
dim = 100 #dimension of brownian motion
P = 2048 #number of outer Monte Carlo Loops
batch_size = 64
total_time = 1.0
num_time_interval = 100
r = 0.01
sigma = 0.25
x_init = 100
strike = x_init*dim
exact = 157.99
config = {
"eqn_config": {
"_comment": "a basket call option",
"eqn_name": "BasketOption",
"total_time": total_time,
"dim": dim,
"num_time_interval": num_time_interval,
"strike":strike,
"r":r,
"sigma":sigma,
"x_init":x_init
},
"net_config": {
"y_init_range": [150, 170],#[154.37,165.41], #set to None when not sure
"num_hiddens": [dim+10, dim+10],
"lr_values": [5e-2, 5e-3],#[5e-1,5e-2, 5e-3],
"lr_boundaries": [2000],#[1000,2000],
"num_iterations": 4000,
"batch_size": batch_size,
"valid_size": 128,
"logging_frequency": 100,
"dtype": "float64",
"verbose": True
}
}
config = munch.munchify(config)
bsde = getattr(eqn, config.eqn_config.eqn_name)(config.eqn_config)
tf.keras.backend.set_floatx(config.net_config.dtype)
#apply algorithm 1
bsde_solver = BSDESolver(config, bsde)
training_history = bsde_solver.train()
#Simulate the BSDE after training - MtM scenarios
simulations = bsde_solver.model.simulate_path(bsde.sample(P))
#estimated epected positive and negative exposure
time_stamp = np.linspace(0,1,num_time_interval+1)
epe = np.mean(np.exp(-r*time_stamp)*np.maximum(simulations,0),axis=0)
ene = np.mean(np.exp(-r*time_stamp)*np.minimum(simulations,0),axis=0)
epe_exact = np.array([exact for s in time_stamp[1:]])
ene_exact = np.array([0.0 for s in time_stamp[1:]])
fig = plt.figure()
plt.plot(time_stamp,[exact] + list(epe_exact),'b--',label='DEPE = exact solution',)
plt.plot(time_stamp,np.transpose(epe),'b',label='DEPE = deep solver approximation')
plt.plot(time_stamp,[0.0]+ list(ene_exact),'r--',label='DNPE = exact solution',)
plt.plot(time_stamp,np.transpose(ene),'r',label='DNPE = deep solver approximation')
plt.xlabel('t')
plt.legend()
plt.show()
fig.savefig(config.eqn_config.eqn_name + '.pdf',format = 'pdf')
df = pd.DataFrame(simulations[:,0,:])
filepath = 'exposure' + config.eqn_config.eqn_name + '.xlsx'
df.to_excel(filepath, index=False)
configBCVA = {
"eqn_config": {
"_comment": "BCVA on a basket call",
"eqn_name": "BCVA",
"dim": dim,
"total_time": total_time,
"num_time_interval": num_time_interval,
"r":r,
"recoveryC" : 0.3,
"lambdaC" : 0.1,
"recoveryB" : 0.4,
"lambdaB" : 0.01,
"clean_value": bsde,
"clean_value_model": bsde_solver.model
},
"net_config": {
"y_init_range": [0, 20],
"num_hiddens": [dim+10, dim+10],
"lr_values": [5e-2, 5e-3],
"lr_boundaries": [2000],
"num_iterations": 4000,
"batch_size": batch_size,
"valid_size": 128,
"logging_frequency": 100,
"dtype": "float64",
"verbose": True
}
}
configBCVA = munch.munchify(configBCVA)
bcvabsde = getattr(receqn, configBCVA.eqn_config.eqn_name)(configBCVA.eqn_config)
tf.keras.backend.set_floatx(configBCVA.net_config.dtype)
#apply algorithm 3
bcva_solver = XvaSolver(configBCVA, bcvabsde)
#loss: 1.7611e-01, Y0: 6.9664e-01,
bcva_training_history = bcva_solver.train()
bcva_simulations = bcva_solver.model.simulate_path(bcvabsde.sample(P))
#(0.699395244753698, [0.6903630282972714, 0.7084274612101246])
print(bcvabsde.monte_carlo(100000))