-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_to_make_array.py
107 lines (94 loc) · 2.77 KB
/
demo_to_make_array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
from numpy.ma.core import reshape
def print_array_info(arr):
print("arr = ",arr)
print("arr dtype = ",arr.dtype)
print("arr itemsize = ",arr.itemsize)
print("no of items = ",arr.size)
print("total size = ",arr.nbytes)
print("arr dimensions = ",arr.ndim)
print("arr shape = ",arr.shape)
print("arr flags = ",arr.flags)
def function2():
arr1 = np.array([11,22,33,44,55])
print_array_info(arr1)
arr2 = np.array([11,22,33,44,55],dtype=np.int8)
print_array_info(arr2)
arr3 = np.array([11,22,33,44,55],dtype=np.uint8)
print_array_info(arr3)
arr4 = np.array([1.1,2.2,3.3,4.4,5.5],dtype=np.float16)
print_array_info(arr4)
arr5 = np.array([1.1,11,67,True],dtype=np.int8)
print_array_info(arr5)
function2()
# to create arrays in different ways
def function3():
# numpy array of from list collection
arr1 = np.array([11,22,33])
print_array_info(arr1)
# numpy array from tuple collection
arr2 = np.array((11,22,33,44))
print_array_info(arr2)
# numpy array from list of lists
arr3 = np.array([[10,20,30],[40,50,60]])
print_array_info(arr3)
function3()
def function4():
# array from range of elements
arr1 = np.arange(1,5)
print_array_info(arr1)
# array of all 1s
arr2 = np.ones(5,dtype=np.int8)
print_array_info(arr2)
arr3 = np.ones((3,4),dtype=np.int8)
print_array_info(arr3)
# array of zeros
arr4 = np.zeros(5)
print(arr4)
arr5 = np.zeros((3,4),dtype=np.int8)
print_array_info(arr5)
# array of random numbers
arr6 = np.random.randint(10,50,size=5)
print_array_info(arr6)
function4()
def function5():
arr1 = np.array([[1,2,3,4],[5,6,7,8]])
print_array_info(arr1)
arr2 = arr1.reshape((4,2))
print_array_info(arr2)
arr3 = arr1.reshape((8,))
print_array_info(arr3)
function5()
def function6():
arr1 = np.array([[10,20,30],[40,50,60]])
print_array_info(arr1)
arr2 =arr1.flatten()
print_array_info(arr2)
function6()
def function7():
arr1 = np.array([11,22,33,44,55])
arr1[1] = 1
arr1[2] = 2
print_array_info(arr1)
print(arr1) #[11 1 2 44 55]
arr2 = arr1.copy()
arr2[3] = 3
print(arr2) # [11 1 2 3 55]
print(arr1) #[11 1 2 44 55]
function7()
def function8():
arr1 = np.array([11,22,33,44,55])
arr2 = arr1.view()
arr1[0] = 0
arr1[1] = 1
arr2[2] = 2
arr2[3] = 3
print("\n\n\n\n",arr1) #[ 0 1 2 3 55]
print(arr2) #[ 0 1 2 3 55]
function8()
def function9():
arr1 = np.array([[10,20,30],[40,50,60]])
print_array_info(arr1)
arr1.resize([3,2])
print_array_info(arr1)
function9()