-
Notifications
You must be signed in to change notification settings - Fork 104
/
ewald.f90
161 lines (132 loc) · 8.13 KB
/
ewald.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
! ewald.f90
! Test routines provided in ewald_module.f90
PROGRAM ewald
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
! Reads an atomic configuration with periodic boundary conditions from cnf.inp
! Calculates r-space and k-space contributions to potential energy
! for given screening parameter kappa and number of wave vectors determined by nk
! Adds the surface term.
! Compares with brute force summation in real space over shells of periodic boxes
! Leave namelist empty to accept supplied defaults
USE, INTRINSIC :: iso_fortran_env, ONLY : input_unit, output_unit, error_unit, iostat_end, iostat_eor, &
& COMPILER_VERSION, COMPILER_OPTIONS
USE config_io_module, ONLY : read_cnf_atoms
USE ewald_module, ONLY : pot_r_ewald, pot_k_ewald, pot_k_pm_ewald
IMPLICIT NONE
INTEGER :: n ! Number of atoms
REAL, DIMENSION(:,:), ALLOCATABLE :: r ! Positions (3,n)
REAL, DIMENSION(:), ALLOCATABLE :: q ! Charges (n)
REAL, DIMENSION(:), ALLOCATABLE :: pot_shell ! Potential for each shell (0:nbox**2)
CHARACTER(len=7), PARAMETER :: filename = 'cnf.inp'
REAL, DIMENSION(3) :: rij, dipole, rbox_vec
REAL :: box, kappa, pot, pot_r, pot_k, pot_s
INTEGER :: ioerr
INTEGER :: i, j, xbox, ybox, zbox, rbox, rbox_sq, nbox, nbox_sq, nk
REAL, PARAMETER :: pi = 4.0*ATAN(1.0), twopi = 2.0*pi
NAMELIST /nml/ kappa, nk, nbox
WRITE ( unit=output_unit, fmt='(a)' ) 'ewald'
WRITE ( unit=output_unit, fmt='(2a)' ) 'Compiler: ', COMPILER_VERSION()
WRITE ( unit=output_unit, fmt='(2a/)' ) 'Options: ', COMPILER_OPTIONS()
WRITE ( unit=output_unit, fmt='(a)' ) 'Energy of system of charges by Ewald summation'
! Sensible default values
kappa = 6.0
nk = 8
nbox = 8
READ ( unit=input_unit, nml=nml, iostat=ioerr ) ! Namelist input
IF ( ioerr /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)') 'Error reading namelist nml from standard input', ioerr
IF ( ioerr == iostat_eor ) WRITE ( unit=error_unit, fmt='(a)') 'End of record'
IF ( ioerr == iostat_end ) WRITE ( unit=error_unit, fmt='(a)') 'End of file'
STOP 'Error in ewald'
END IF
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'kappa*box', kappa
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Wave-vector limit in each direction', nk
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Brute force box limit', nbox
nbox_sq = nbox**2
CALL read_cnf_atoms ( filename, n, box ) ! First call to obtain n
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of particles', n
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)') 'Box (in sigma units)', box
ALLOCATE ( r(3,n), q(n), pot_shell(0:nbox_sq) )
CALL read_cnf_atoms ( filename, n, box, r ) ! Second call to read in configuration
r = r / box ! Work throughout in unit box
r = r - ANINT ( r ) ! Apply periodic boundaries
! Assign +/- charges ensuring net charge is zero
IF ( MOD(n,2) /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a)') 'Error, we require even N for charge balance'
STOP 'Error in ewald'
END IF
q(1:n:2) = 1.0
q(2:n:2) = -1.0
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)') 'Net charge', SUM(q)
! Compute potential energy by Ewald method
pot_r = pot_r_ewald ( n, r, q, kappa ) ! Real-space term involving screened Coulomb potential
pot_k = pot_k_ewald ( nk, n, r, q, kappa ) ! Reciprocal space term
dipole = SUM ( SPREAD(q(:),dim=1,ncopies=3)*r, dim=2 ) ! Calculate overall box dipole
pot_s = ( twopi / 3.0 ) * SUM ( dipole**2 ) ! Surface term
pot = pot_r + pot_k + pot_s ! Total potential
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'r-space potential energy', pot_r
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'k-space potential energy', pot_k
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'surface potential energy', pot_s
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'total potential energy', pot
! Compare with an illustrative (simplified) particle-mesh method
pot_k = pot_k_pm_ewald ( nk, n, r, q, kappa ) ! Reciprocal space term
pot = pot_r + pot_k + pot_s ! Total potential
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'k-space potential energy (PME)', pot_k
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'total potential energy (PME)', pot
! Compare with brute force calculation
! Big multiple loop over all pairs and surrounding periodic boxes
! For clarity we count all pairs twice, as ij and ji
! Potentials are stored according to squared distance of neighbouring box
WRITE ( unit=output_unit, fmt='(a)' ) 'Brute force method'
pot_shell = 0.0 ! Zero array of potentials (not all the elements of this array will be filled)
DO xbox = -nbox, nbox
DO ybox = -nbox, nbox
DO zbox = -nbox, nbox
rbox_sq = xbox**2 + ybox**2 + zbox**2
IF ( rbox_sq > nbox_sq ) CYCLE ! Skip if outside maximum sphere of boxes
rbox_vec = REAL ( [xbox,ybox,zbox] )
DO i = 1, n
DO j = 1, n
IF ( i==j .AND. rbox_sq==0 ) CYCLE ! Skip only for i=j in central box
! Bare Coulomb term, including box vector, no periodic box correction
rij = r(:,i) - r(:,j) - rbox_vec
pot_shell(rbox_sq) = pot_shell(rbox_sq) + q(i)*q(j) / SQRT ( SUM ( rij**2 ) )
END DO
END DO
END DO
END DO
END DO
! Correct for double counting
pot_shell = pot_shell / 2.0
! Convert to cumulative sum
DO rbox_sq = 1, nbox_sq
pot_shell(rbox_sq) = pot_shell(rbox_sq) + pot_shell(rbox_sq-1)
END DO
! Write out results for increasing spherical cutoff
WRITE ( unit=output_unit, fmt='(a)' ) 'Shell Potential'
DO rbox = 0, nbox
WRITE ( unit=output_unit, fmt='(i5,f15.6)' ) rbox, pot_shell(rbox**2)
END DO
DEALLOCATE ( r, q, pot_shell )
END PROGRAM ewald