-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
2039 lines (1630 loc) · 63.6 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright DataStax, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import with_statement
import calendar
import datetime
from functools import total_ordering
import logging
from itertools import chain
import random
import re
import six
import uuid
import sys
_HAS_GEOMET = True
try:
from geomet import wkt
except:
_HAS_GEOMET = False
from cassandra import DriverException
DATETIME_EPOC = datetime.datetime(1970, 1, 1)
UTC_DATETIME_EPOC = datetime.datetime.utcfromtimestamp(0)
_nan = float('nan')
log = logging.getLogger(__name__)
assert sys.byteorder in ('little', 'big')
is_little_endian = sys.byteorder == 'little'
def datetime_from_timestamp(timestamp):
"""
Creates a timezone-agnostic datetime from timestamp (in seconds) in a consistent manner.
Works around a Windows issue with large negative timestamps (PYTHON-119),
and rounding differences in Python 3.4 (PYTHON-340).
:param timestamp: a unix timestamp, in seconds
"""
dt = DATETIME_EPOC + datetime.timedelta(seconds=timestamp)
return dt
def utc_datetime_from_ms_timestamp(timestamp):
"""
Creates a UTC datetime from a timestamp in milliseconds. See
:meth:`datetime_from_timestamp`.
Raises an `OverflowError` if the timestamp is out of range for
:class:`~datetime.datetime`.
:param timestamp: timestamp, in milliseconds
"""
return UTC_DATETIME_EPOC + datetime.timedelta(milliseconds=timestamp)
def ms_timestamp_from_datetime(dt):
"""
Converts a datetime to a timestamp expressed in milliseconds.
:param dt: a :class:`datetime.datetime`
"""
return int(round((dt - UTC_DATETIME_EPOC).total_seconds() * 1000))
def unix_time_from_uuid1(uuid_arg):
"""
Converts a version 1 :class:`uuid.UUID` to a timestamp with the same precision
as :meth:`time.time()` returns. This is useful for examining the
results of queries returning a v1 :class:`~uuid.UUID`.
:param uuid_arg: a version 1 :class:`~uuid.UUID`
"""
return (uuid_arg.time - 0x01B21DD213814000) / 1e7
def datetime_from_uuid1(uuid_arg):
"""
Creates a timezone-agnostic datetime from the timestamp in the
specified type-1 UUID.
:param uuid_arg: a version 1 :class:`~uuid.UUID`
"""
return datetime_from_timestamp(unix_time_from_uuid1(uuid_arg))
def min_uuid_from_time(timestamp):
"""
Generates the minimum TimeUUID (type 1) for a given timestamp, as compared by Cassandra.
See :func:`uuid_from_time` for argument and return types.
"""
return uuid_from_time(timestamp, 0x808080808080, 0x80) # Cassandra does byte-wise comparison; fill with min signed bytes (0x80 = -128)
def max_uuid_from_time(timestamp):
"""
Generates the maximum TimeUUID (type 1) for a given timestamp, as compared by Cassandra.
See :func:`uuid_from_time` for argument and return types.
"""
return uuid_from_time(timestamp, 0x7f7f7f7f7f7f, 0x3f7f) # Max signed bytes (0x7f = 127)
def uuid_from_time(time_arg, node=None, clock_seq=None):
"""
Converts a datetime or timestamp to a type 1 :class:`uuid.UUID`.
:param time_arg:
The time to use for the timestamp portion of the UUID.
This can either be a :class:`datetime` object or a timestamp
in seconds (as returned from :meth:`time.time()`).
:type datetime: :class:`datetime` or timestamp
:param node:
None integer for the UUID (up to 48 bits). If not specified, this
field is randomized.
:type node: long
:param clock_seq:
Clock sequence field for the UUID (up to 14 bits). If not specified,
a random sequence is generated.
:type clock_seq: int
:rtype: :class:`uuid.UUID`
"""
if hasattr(time_arg, 'utctimetuple'):
seconds = int(calendar.timegm(time_arg.utctimetuple()))
microseconds = (seconds * 1e6) + time_arg.time().microsecond
else:
microseconds = int(time_arg * 1e6)
# 0x01b21dd213814000 is the number of 100-ns intervals between the
# UUID epoch 1582-10-15 00:00:00 and the Unix epoch 1970-01-01 00:00:00.
intervals = int(microseconds * 10) + 0x01b21dd213814000
time_low = intervals & 0xffffffff
time_mid = (intervals >> 32) & 0xffff
time_hi_version = (intervals >> 48) & 0x0fff
if clock_seq is None:
clock_seq = random.getrandbits(14)
else:
if clock_seq > 0x3fff:
raise ValueError('clock_seq is out of range (need a 14-bit value)')
clock_seq_low = clock_seq & 0xff
clock_seq_hi_variant = 0x80 | ((clock_seq >> 8) & 0x3f)
if node is None:
node = random.getrandbits(48)
return uuid.UUID(fields=(time_low, time_mid, time_hi_version,
clock_seq_hi_variant, clock_seq_low, node), version=1)
LOWEST_TIME_UUID = uuid.UUID('00000000-0000-1000-8080-808080808080')
""" The lowest possible TimeUUID, as sorted by Cassandra. """
HIGHEST_TIME_UUID = uuid.UUID('ffffffff-ffff-1fff-bf7f-7f7f7f7f7f7f')
""" The highest possible TimeUUID, as sorted by Cassandra. """
def _addrinfo_or_none(contact_point, port):
"""
A helper function that wraps socket.getaddrinfo and returns None
when it fails to, e.g. resolve one of the hostnames. Used to address
PYTHON-895.
"""
try:
value = socket.getaddrinfo(contact_point, port,
socket.AF_UNSPEC, socket.SOCK_STREAM)
return value
except socket.gaierror:
log.debug('Could not resolve hostname "{}" '
'with port {}'.format(contact_point, port))
return None
def _addrinfo_to_ip_strings(addrinfo):
"""
Helper function that consumes the data output by socket.getaddrinfo and
extracts the IP address from the sockaddr portion of the result.
Since this is meant to be used in conjunction with _addrinfo_or_none,
this will pass None and EndPoint instances through unaffected.
"""
if addrinfo is None:
return None
return [(entry[4][0], entry[4][1]) for entry in addrinfo]
def _resolve_contact_points_to_string_map(contact_points):
return OrderedDict(
('{cp}:{port}'.format(cp=cp, port=port), _addrinfo_to_ip_strings(_addrinfo_or_none(cp, port)))
for cp, port in contact_points
)
try:
from collections import OrderedDict
except ImportError:
# OrderedDict from Python 2.7+
# Copyright (c) 2009 Raymond Hettinger
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
from UserDict import DictMixin
class OrderedDict(dict, DictMixin): # noqa
""" A dictionary which maintains the insertion order of keys. """
def __init__(self, *args, **kwds):
""" A dictionary which maintains the insertion order of keys. """
if len(args) > 1:
raise TypeError('expected at most 1 arguments, got %d' % len(args))
try:
self.__end
except AttributeError:
self.clear()
self.update(*args, **kwds)
def clear(self):
self.__end = end = []
end += [None, end, end] # sentinel node for doubly linked list
self.__map = {} # key --> [key, prev, next]
dict.clear(self)
def __setitem__(self, key, value):
if key not in self:
end = self.__end
curr = end[1]
curr[2] = end[1] = self.__map[key] = [key, curr, end]
dict.__setitem__(self, key, value)
def __delitem__(self, key):
dict.__delitem__(self, key)
key, prev, next = self.__map.pop(key)
prev[2] = next
next[1] = prev
def __iter__(self):
end = self.__end
curr = end[2]
while curr is not end:
yield curr[0]
curr = curr[2]
def __reversed__(self):
end = self.__end
curr = end[1]
while curr is not end:
yield curr[0]
curr = curr[1]
def popitem(self, last=True):
if not self:
raise KeyError('dictionary is empty')
if last:
key = next(reversed(self))
else:
key = next(iter(self))
value = self.pop(key)
return key, value
def __reduce__(self):
items = [[k, self[k]] for k in self]
tmp = self.__map, self.__end
del self.__map, self.__end
inst_dict = vars(self).copy()
self.__map, self.__end = tmp
if inst_dict:
return (self.__class__, (items,), inst_dict)
return self.__class__, (items,)
def keys(self):
return list(self)
setdefault = DictMixin.setdefault
update = DictMixin.update
pop = DictMixin.pop
values = DictMixin.values
items = DictMixin.items
iterkeys = DictMixin.iterkeys
itervalues = DictMixin.itervalues
iteritems = DictMixin.iteritems
def __repr__(self):
if not self:
return '%s()' % (self.__class__.__name__,)
return '%s(%r)' % (self.__class__.__name__, self.items())
def copy(self):
return self.__class__(self)
@classmethod
def fromkeys(cls, iterable, value=None):
d = cls()
for key in iterable:
d[key] = value
return d
def __eq__(self, other):
if isinstance(other, OrderedDict):
if len(self) != len(other):
return False
for p, q in zip(self.items(), other.items()):
if p != q:
return False
return True
return dict.__eq__(self, other)
def __ne__(self, other):
return not self == other
# WeakSet from Python 2.7+ (https://code.google.com/p/weakrefset)
from _weakref import ref
class _IterationGuard(object):
# This context manager registers itself in the current iterators of the
# weak container, such as to delay all removals until the context manager
# exits.
# This technique should be relatively thread-safe (since sets are).
def __init__(self, weakcontainer):
# Don't create cycles
self.weakcontainer = ref(weakcontainer)
def __enter__(self):
w = self.weakcontainer()
if w is not None:
w._iterating.add(self)
return self
def __exit__(self, e, t, b):
w = self.weakcontainer()
if w is not None:
s = w._iterating
s.remove(self)
if not s:
w._commit_removals()
class WeakSet(object):
def __init__(self, data=None):
self.data = set()
def _remove(item, selfref=ref(self)):
self = selfref()
if self is not None:
if self._iterating:
self._pending_removals.append(item)
else:
self.data.discard(item)
self._remove = _remove
# A list of keys to be removed
self._pending_removals = []
self._iterating = set()
if data is not None:
self.update(data)
def _commit_removals(self):
l = self._pending_removals
discard = self.data.discard
while l:
discard(l.pop())
def __iter__(self):
with _IterationGuard(self):
for itemref in self.data:
item = itemref()
if item is not None:
yield item
def __len__(self):
return sum(x() is not None for x in self.data)
def __contains__(self, item):
return ref(item) in self.data
def __reduce__(self):
return (self.__class__, (list(self),),
getattr(self, '__dict__', None))
__hash__ = None
def add(self, item):
if self._pending_removals:
self._commit_removals()
self.data.add(ref(item, self._remove))
def clear(self):
if self._pending_removals:
self._commit_removals()
self.data.clear()
def copy(self):
return self.__class__(self)
def pop(self):
if self._pending_removals:
self._commit_removals()
while True:
try:
itemref = self.data.pop()
except KeyError:
raise KeyError('pop from empty WeakSet')
item = itemref()
if item is not None:
return item
def remove(self, item):
if self._pending_removals:
self._commit_removals()
self.data.remove(ref(item))
def discard(self, item):
if self._pending_removals:
self._commit_removals()
self.data.discard(ref(item))
def update(self, other):
if self._pending_removals:
self._commit_removals()
if isinstance(other, self.__class__):
self.data.update(other.data)
else:
for element in other:
self.add(element)
def __ior__(self, other):
self.update(other)
return self
# Helper functions for simple delegating methods.
def _apply(self, other, method):
if not isinstance(other, self.__class__):
other = self.__class__(other)
newdata = method(other.data)
newset = self.__class__()
newset.data = newdata
return newset
def difference(self, other):
return self._apply(other, self.data.difference)
__sub__ = difference
def difference_update(self, other):
if self._pending_removals:
self._commit_removals()
if self is other:
self.data.clear()
else:
self.data.difference_update(ref(item) for item in other)
def __isub__(self, other):
if self._pending_removals:
self._commit_removals()
if self is other:
self.data.clear()
else:
self.data.difference_update(ref(item) for item in other)
return self
def intersection(self, other):
return self._apply(other, self.data.intersection)
__and__ = intersection
def intersection_update(self, other):
if self._pending_removals:
self._commit_removals()
self.data.intersection_update(ref(item) for item in other)
def __iand__(self, other):
if self._pending_removals:
self._commit_removals()
self.data.intersection_update(ref(item) for item in other)
return self
def issubset(self, other):
return self.data.issubset(ref(item) for item in other)
__lt__ = issubset
def __le__(self, other):
return self.data <= set(ref(item) for item in other)
def issuperset(self, other):
return self.data.issuperset(ref(item) for item in other)
__gt__ = issuperset
def __ge__(self, other):
return self.data >= set(ref(item) for item in other)
def __eq__(self, other):
if not isinstance(other, self.__class__):
return NotImplemented
return self.data == set(ref(item) for item in other)
def symmetric_difference(self, other):
return self._apply(other, self.data.symmetric_difference)
__xor__ = symmetric_difference
def symmetric_difference_update(self, other):
if self._pending_removals:
self._commit_removals()
if self is other:
self.data.clear()
else:
self.data.symmetric_difference_update(ref(item) for item in other)
def __ixor__(self, other):
if self._pending_removals:
self._commit_removals()
if self is other:
self.data.clear()
else:
self.data.symmetric_difference_update(ref(item) for item in other)
return self
def union(self, other):
return self._apply(other, self.data.union)
__or__ = union
def isdisjoint(self, other):
return len(self.intersection(other)) == 0
class SortedSet(object):
'''
A sorted set based on sorted list
A sorted set implementation is used in this case because it does not
require its elements to be immutable/hashable.
#Not implemented: update functions, inplace operators
'''
def __init__(self, iterable=()):
self._items = []
self.update(iterable)
def __len__(self):
return len(self._items)
def __getitem__(self, i):
return self._items[i]
def __iter__(self):
return iter(self._items)
def __reversed__(self):
return reversed(self._items)
def __repr__(self):
return '%s(%r)' % (
self.__class__.__name__,
self._items)
def __reduce__(self):
return self.__class__, (self._items,)
def __eq__(self, other):
if isinstance(other, self.__class__):
return self._items == other._items
else:
try:
return len(other) == len(self._items) and all(item in self for item in other)
except TypeError:
return NotImplemented
def __ne__(self, other):
if isinstance(other, self.__class__):
return self._items != other._items
else:
try:
return len(other) != len(self._items) or any(item not in self for item in other)
except TypeError:
return NotImplemented
def __le__(self, other):
return self.issubset(other)
def __lt__(self, other):
return len(other) > len(self._items) and self.issubset(other)
def __ge__(self, other):
return self.issuperset(other)
def __gt__(self, other):
return len(self._items) > len(other) and self.issuperset(other)
def __and__(self, other):
return self._intersect(other)
__rand__ = __and__
def __iand__(self, other):
isect = self._intersect(other)
self._items = isect._items
return self
def __or__(self, other):
return self.union(other)
__ror__ = __or__
def __ior__(self, other):
union = self.union(other)
self._items = union._items
return self
def __sub__(self, other):
return self._diff(other)
def __rsub__(self, other):
return sortedset(other) - self
def __isub__(self, other):
diff = self._diff(other)
self._items = diff._items
return self
def __xor__(self, other):
return self.symmetric_difference(other)
__rxor__ = __xor__
def __ixor__(self, other):
sym_diff = self.symmetric_difference(other)
self._items = sym_diff._items
return self
def __contains__(self, item):
i = self._find_insertion(item)
return i < len(self._items) and self._items[i] == item
def __delitem__(self, i):
del self._items[i]
def __delslice__(self, i, j):
del self._items[i:j]
def add(self, item):
i = self._find_insertion(item)
if i < len(self._items):
if self._items[i] != item:
self._items.insert(i, item)
else:
self._items.append(item)
def update(self, iterable):
for i in iterable:
self.add(i)
def clear(self):
del self._items[:]
def copy(self):
new = sortedset()
new._items = list(self._items)
return new
def isdisjoint(self, other):
return len(self._intersect(other)) == 0
def issubset(self, other):
return len(self._intersect(other)) == len(self._items)
def issuperset(self, other):
return len(self._intersect(other)) == len(other)
def pop(self):
if not self._items:
raise KeyError("pop from empty set")
return self._items.pop()
def remove(self, item):
i = self._find_insertion(item)
if i < len(self._items):
if self._items[i] == item:
self._items.pop(i)
return
raise KeyError('%r' % item)
def union(self, *others):
union = sortedset()
union._items = list(self._items)
for other in others:
for item in other:
union.add(item)
return union
def intersection(self, *others):
isect = self.copy()
for other in others:
isect = isect._intersect(other)
if not isect:
break
return isect
def difference(self, *others):
diff = self.copy()
for other in others:
diff = diff._diff(other)
if not diff:
break
return diff
def symmetric_difference(self, other):
diff_self_other = self._diff(other)
diff_other_self = other.difference(self)
return diff_self_other.union(diff_other_self)
def _diff(self, other):
diff = sortedset()
for item in self._items:
if item not in other:
diff.add(item)
return diff
def _intersect(self, other):
isect = sortedset()
for item in self._items:
if item in other:
isect.add(item)
return isect
def _find_insertion(self, x):
# this uses bisect_left algorithm unless it has elements it can't compare,
# in which case it defaults to grouping non-comparable items at the beginning or end,
# and scanning sequentially to find an insertion point
a = self._items
lo = 0
hi = len(a)
try:
while lo < hi:
mid = (lo + hi) // 2
if a[mid] < x: lo = mid + 1
else: hi = mid
except TypeError:
# could not compare a[mid] with x
# start scanning to find insertion point while swallowing type errors
lo = 0
compared_one = False # flag is used to determine whether uncomparables are grouped at the front or back
while lo < hi:
try:
if a[lo] == x or a[lo] >= x: break
compared_one = True
except TypeError:
if compared_one: break
lo += 1
return lo
sortedset = SortedSet # backwards-compatibility
from cassandra.compat import Mapping
from six.moves import cPickle
class OrderedMap(Mapping):
'''
An ordered map that accepts non-hashable types for keys. It also maintains the
insertion order of items, behaving as OrderedDict in that regard. These maps
are constructed and read just as normal mapping types, exept that they may
contain arbitrary collections and other non-hashable items as keys::
>>> od = OrderedMap([({'one': 1, 'two': 2}, 'value'),
... ({'three': 3, 'four': 4}, 'value2')])
>>> list(od.keys())
[{'two': 2, 'one': 1}, {'three': 3, 'four': 4}]
>>> list(od.values())
['value', 'value2']
These constructs are needed to support nested collections in Cassandra 2.1.3+,
where frozen collections can be specified as parameters to others::
CREATE TABLE example (
...
value map<frozen<map<int, int>>, double>
...
)
This class derives from the (immutable) Mapping API. Objects in these maps
are not intended be modified.
'''
def __init__(self, *args, **kwargs):
if len(args) > 1:
raise TypeError('expected at most 1 arguments, got %d' % len(args))
self._items = []
self._index = {}
if args:
e = args[0]
if callable(getattr(e, 'keys', None)):
for k in e.keys():
self._insert(k, e[k])
else:
for k, v in e:
self._insert(k, v)
for k, v in six.iteritems(kwargs):
self._insert(k, v)
def _insert(self, key, value):
flat_key = self._serialize_key(key)
i = self._index.get(flat_key, -1)
if i >= 0:
self._items[i] = (key, value)
else:
self._items.append((key, value))
self._index[flat_key] = len(self._items) - 1
__setitem__ = _insert
def __getitem__(self, key):
try:
index = self._index[self._serialize_key(key)]
return self._items[index][1]
except KeyError:
raise KeyError(str(key))
def __delitem__(self, key):
# not efficient -- for convenience only
try:
index = self._index.pop(self._serialize_key(key))
self._index = dict((k, i if i < index else i - 1) for k, i in self._index.items())
self._items.pop(index)
except KeyError:
raise KeyError(str(key))
def __iter__(self):
for i in self._items:
yield i[0]
def __len__(self):
return len(self._items)
def __eq__(self, other):
if isinstance(other, OrderedMap):
return self._items == other._items
try:
d = dict(other)
return len(d) == len(self._items) and all(i[1] == d[i[0]] for i in self._items)
except KeyError:
return False
except TypeError:
pass
return NotImplemented
def __repr__(self):
return '%s([%s])' % (
self.__class__.__name__,
', '.join("(%r, %r)" % (k, v) for k, v in self._items))
def __str__(self):
return '{%s}' % ', '.join("%r: %r" % (k, v) for k, v in self._items)
def popitem(self):
try:
kv = self._items.pop()
del self._index[self._serialize_key(kv[0])]
return kv
except IndexError:
raise KeyError()
def _serialize_key(self, key):
return cPickle.dumps(key)
class OrderedMapSerializedKey(OrderedMap):
def __init__(self, cass_type, protocol_version):
super(OrderedMapSerializedKey, self).__init__()
self.cass_key_type = cass_type
self.protocol_version = protocol_version
def _insert_unchecked(self, key, flat_key, value):
self._items.append((key, value))
self._index[flat_key] = len(self._items) - 1
def _serialize_key(self, key):
return self.cass_key_type.serialize(key, self.protocol_version)
import datetime
import time
if six.PY3:
long = int
@total_ordering
class Time(object):
'''
Idealized time, independent of day.
Up to nanosecond resolution
'''
MICRO = 1000
MILLI = 1000 * MICRO
SECOND = 1000 * MILLI
MINUTE = 60 * SECOND
HOUR = 60 * MINUTE
DAY = 24 * HOUR
nanosecond_time = 0
def __init__(self, value):
"""
Initializer value can be:
- integer_type: absolute nanoseconds in the day
- datetime.time: built-in time
- string_type: a string time of the form "HH:MM:SS[.mmmuuunnn]"
"""
if isinstance(value, six.integer_types):
self._from_timestamp(value)
elif isinstance(value, datetime.time):
self._from_time(value)
elif isinstance(value, six.string_types):
self._from_timestring(value)
else:
raise TypeError('Time arguments must be a whole number, datetime.time, or string')
@property
def hour(self):
"""
The hour component of this time (0-23)
"""
return self.nanosecond_time // Time.HOUR
@property
def minute(self):
"""
The minute component of this time (0-59)
"""
minutes = self.nanosecond_time // Time.MINUTE
return minutes % 60
@property
def second(self):
"""
The second component of this time (0-59)
"""
seconds = self.nanosecond_time // Time.SECOND
return seconds % 60
@property
def nanosecond(self):
"""
The fractional seconds component of the time, in nanoseconds
"""
return self.nanosecond_time % Time.SECOND
def time(self):
"""
Return a built-in datetime.time (nanosecond precision truncated to micros).
"""
return datetime.time(hour=self.hour, minute=self.minute, second=self.second,
microsecond=self.nanosecond // Time.MICRO)
def _from_timestamp(self, t):