-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreal_time_detection.py
92 lines (69 loc) · 2.94 KB
/
real_time_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import cv2
import time
import numpy as np
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.builders import model_builder
from object_detection.utils import config_util
LABEL_MAP_NAME = 'label_map.pbtxt'
paths = {
'ANNOTATION_PATH': os.path.join('Tensorflow', 'workspace','annotations'),
'CHECKPOINT_PATH': os.path.join('model')
}
files = {
'PIPELINE_CONFIG':os.path.join('model', 'pipeline.config'),
'LABELMAP': os.path.join('model', LABEL_MAP_NAME)
}
category_index = label_map_util.create_category_index_from_labelmap(files['LABELMAP'])
#Load pipeline config and build a detection model.
configs = config_util.get_configs_from_pipeline_file(files['PIPELINE_CONFIG'])
detection_model = model_builder.build(model_config=configs['model'], is_training = False)
# Restore checkpoint
ckpt = tf.compat.v2.train.Checkpoint(model=detection_model)
ckpt.restore(os.path.join(paths['CHECKPOINT_PATH'], 'ckpt-5')).expect_partial()
@tf.function
def detect_fn(image):
image, shapes = detection_model.preprocess(image)
prediction_dict = detection_model.predict(image, shapes)
detections = detection_model.postprocess(prediction_dict, shapes)
return detections
#Real-time detection from a webcam.
#sample_video = 'Learn ASL Alphabet.mp4'
cap = cv2.VideoCapture(0)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
while cap.isOpened():
start = time.time() #Start time.
ret, frame = cap.read()
image_np = np.array(frame)
input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype = tf.float32)
detections = detect_fn(input_tensor)
num_detections = int(detections.pop('num_detections'))
detections = {key: value[0, :num_detections].numpy()
for key, value in detections.items()}
detections['num_detections'] = num_detections
#Detection_classes should be int.
detections['detection_classes'] = detections['detection_classes'].astype(np.int64)
label_id_offset = 1
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections,
detections['detection_boxes'],
detections['detection_classes']+label_id_offset,
detections['detection_scores'],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw = 5,
min_score_thresh = .4, agnostic_mode = False)
cv2.imshow('object detection', cv2.resize(image_np_with_detections, (800, 600)))
stop = time.time()
seconds = stop - start
#Frames per second.
fps = 1 / seconds
print(f'Estimated frames per second: {fps}')
if cv2.waitKey(10) & 0xFF == ord('q'):
cap.release()
cv2.destroyAllWindows()
break