forked from rust-ml/linfa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCargo.toml
78 lines (61 loc) · 1.86 KB
/
Cargo.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
[package]
name = "linfa"
version = "0.7.0"
authors = [
"Luca Palmieri <[email protected]>",
"Lorenz Schmidt <[email protected]>",
"Paul Körbitz <[email protected]>",
"Yuhan Lin <[email protected]>",
]
description = "A Machine Learning framework for Rust"
edition = "2018"
license = "MIT OR Apache-2.0"
repository = "https://github.com/rust-ml/linfa"
readme = "README.md"
keywords = ["machine-learning", "linfa", "ai", "ml"]
categories = ["algorithms", "mathematics", "science"]
exclude = [".github/"]
[features]
default = []
benchmarks = ["criterion", "pprof"]
netlib-static = ["blas", "ndarray-linalg/netlib-static"]
netlib-system = ["blas", "ndarray-linalg/netlib-system"]
openblas-static = ["blas", "ndarray-linalg/openblas-static"]
openblas-system = ["blas", "ndarray-linalg/openblas-system"]
intel-mkl-static = ["blas", "ndarray-linalg/intel-mkl-static"]
intel-mkl-system = ["blas", "ndarray-linalg/intel-mkl-system"]
blas = ["ndarray/blas"]
serde = ["serde_crate", "ndarray/serde"]
[dependencies]
num-traits = "0.2"
rand = { version = "0.8", features = ["small_rng"] }
approx = "0.4"
ndarray = { version = "0.15", features = ["approx"] }
ndarray-linalg = { version = "0.16", optional = true }
sprs = { version = "0.11", default-features = false }
thiserror = "1.0"
criterion = { version = "0.4.0", optional = true }
[dependencies.serde_crate]
package = "serde"
optional = true
version = "1.0"
default-features = false
features = ["std", "derive"]
[dev-dependencies]
ndarray-rand = "0.14"
linfa-datasets = { path = "datasets", features = [
"winequality",
"iris",
"diabetes",
"generate",
] }
statrs = "0.16.0"
[target.'cfg(not(windows))'.dependencies]
pprof = { version = "0.11.0", features = [
"flamegraph",
"criterion",
], optional = true }
[workspace]
members = ["algorithms/*", "datasets"]
[profile.release]
opt-level = 3