-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddpg_model.py
96 lines (74 loc) · 2.75 KB
/
ddpg_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
'''
The code is referred from
1. https://github.com/udacity/deep-reinforcement-learning/tree/master/ddpg-pendulum
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
def hidden_init(layer):
'''
Provide fan in (the number of input units) of each hidden layer
as the component of normalizer.
:param
layer: hidden layer
:return
(-lim, lim): tuple of min and max value for uniform distribution
'''
fan_in = layer.weight.data.size()[0]
lim = 1. / np.sqrt(fan_in)
return (-lim, lim)
class Actor(nn.Module):
def __init__(self, state_size, action_size, seed, fc1_units=128, fc2_units=64):
'''
Initialize parameters and build model.
:param
state_size (int)
action_size (int)
seed (int)
fc1_units (int)
fc2_units (int)
'''
super(Actor, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state):
'''Build an actor (policy) network that maps state to actions
:return:
actions (batch_size, action_size; tensor): being limited within range (-1,1)
'''
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
return F.tanh(self.fc3(x))
class Critic(nn.Module):
def __init__(self, state_size, action_size, seed, fc1_units=128, fc2_units=64):
super(Critic, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units+action_size, fc2_units) # actions are included in latter phase
self.fc3 = nn.Linear(fc2_units, 1)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state, action):
'''
Build a critic (value) network that maps (state, action) pairs to Q-value.
:param
state (batch_size, state_size; tensor)
action (batch_size, action_size; tensor)
:return
q_value (batch_size, 1; tensor)
'''
s1 = F.relu(self.fc1(state))
sa1 = torch.cat((s1, action), dim=1)
x = F.relu(self.fc2(sa1))
return self.fc3(x)