-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv3d.cu
271 lines (221 loc) · 10.4 KB
/
conv3d.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*
#ifndef CONV3D_H
#define CONV3D_H
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
typedef struct {
int in_channels;
int out_channels;
int kernel_size;
int stride;
int padding;
int bias;
float* weights;
float* bias_term;
} Conv3D;
Conv3D* conv3d_init(int in_channels, int out_channels, int kernel_size, int stride, int padding, int bias) {
Conv3D* conv = (Conv3D*)malloc(sizeof(Conv3D));
conv->in_channels = in_channels;
conv->out_channels = out_channels;
conv->kernel_size = kernel_size;
conv->stride = stride;
conv->padding = padding;
conv->bias = bias;
conv->weights = (float*)malloc(sizeof(float) * out_channels * in_channels * kernel_size * kernel_size * kernel_size);
if (bias) {
conv->bias_term = (float*)malloc(sizeof(float) * out_channels);
}
// Xavier initialization of weights
if (bias) {
for (int i = 0; i < out_channels * in_channels * kernel_size * kernel_size * kernel_size; i++) {
conv->weights[i] = (float) rand() / RAND_MAX * 2 * sqrt(6.0 / (in_channels * kernel_size * kernel_size * kernel_size + out_channels));
}
for (int i = 0; i < out_channels; i++) {
conv->bias_term[i] = 0;
}
} else {
for (int i = 0; i < out_channels * in_channels * kernel_size * kernel_size * kernel_size; i++) {
conv->weights[i] = (float) rand() / RAND_MAX * 2 * sqrt(6.0 / (in_channels * kernel_size * kernel_size * kernel_size));
}
}
return conv;
}
void conv3d_free(Conv3D* conv) {
free(conv->weights);
if (conv->bias) {
free(conv->bias_term);
}
free(conv);
}
void* conv3d_forward(Conv3D* conv, float* input) {
int batch_size = input[0];
int depth = input[1];
int height = input[2];
int width = input[3];
int in_channels = conv->in_channels;
int out_depth = (depth - conv->kernel_size + 2 * conv->padding) / conv->stride + 1;
int out_height = (height - conv->kernel_size + 2 * conv->padding) / conv->stride + 1;
int out_width = (width - conv->kernel_size + 2 * conv->padding) / conv->stride + 1;
int out_channels = conv->out_channels;
float* output = (float*)malloc(sizeof(float) * batch_size * out_channels * out_depth * out_height * out_width);
for (int b = 0; b < batch_size; b++) {
for (int o_c = 0; o_c < out_channels; o_c++) {
for (int o_d = 0; o_d < out_depth; o_d++) {
for (int o_h = 0; o_h < out_height; o_h++) {
for (int o_w = 0; o_w < out_width; o_w++) {
float sum = 0;
for (int i_c = 0; i_c < in_channels; i_c++) {
for (int k_d = 0; k_d < conv->kernel_size; k_d++) {
#include <conv3d.h>
#include <stdlib.h>
#include <stdio.h>
__global__ void conv3d_kernel(const float* input, const float* kernel, float* output, int D, int H, int W, int k1, int k2, int k3){
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
int z = blockIdx.z * blockDim.z + threadIdx.z;
int pad_D = k1 / 2;
int pad_H = k2 / 2;
int pad_W = k3 / 2;
if (x >= W || y >= H || z >= D) return;
float sum = 0.0f;
for (int K1 = 0; K1 < k1; K1++) {
for (int K2 = 0; K2 < k2; K2++) {
for (int K3=0; K3 < k3; K3++) {
int inZ = z + K1 - pad_D;
int inY = y + K2 - pad_H;
int inX = x + K3 - pad_W;
if (inZ >= 0 && inZ < D && inY >= 0 && inY < H && inX >=0 && inX < W) {
sum += input[inZ * H * W + inY * W + inX] * kernel[K1 * k3 * k2 + K2 * k3 + K3];
}
}
}
}
output[z * H * W + y * W + x] = sum;
}
void conv3d_init(Conv3D* conv, int inputDepth, int inputHeight, int inputWidth, int kernelDepth, int kernelHeight, int kernelWidth) {
conv->D = inputDepth;
conv->H = inputHeight;
conv->W = inputWidth;
conv->k1 = kernelDepth;
conv->k2 = kernelHeight;
conv->k3 = kernelWidth;
size_t inputSize = conv->D * conv->H * conv->W * sizeof(float);
size_t kernelSize = conv->k1 * conv->k2 * conv->k3 * sizeof(float);
size_t outputSize = conv->D * conv->H * conv->W * sizeof(float);
cudaMalloc(&conv->device_input, inputSize);
cudaMalloc(&conv->device_kernel, kernelSize);
cudaMalloc(&conv->device_output, outputSize);
}
void conv3d_set_input(Conv3D* conv, const float* inputData) {
size_t inputSize = conv->D * conv->H * conv->W *sizeof(float);
cudaMemcpy(conv->device_input, inputData, inputSize, cudaMemcpyHostToDevice);
}
void conv3d_set_kernel(Conv3D* conv, const float* kernelData) {
size_t kernelData = conv->k1 * conv->k2 * conv->k3 * sizeof(float);
cudaMemcpy(conv->device_kernel, kernelData, kernelSize, cudaMemcpyHostToDevice);
}
void conv3d_execute(Conv3D* conv, float* outputData) {
dim3 blockSize(8, 8, 8);
dim3 gridSize((conv->W + blockSize.x - 1) / blockSize.x, (conv->H + blockSize.y - 1) / blockSize.y, (conv->D + blockSize.z - 1) / blockSize.z);
conv3d_kernel<<<gridSize, blockSize>>>(conv->device_input, conv->device_kernel, conv->device_output, conv->D, conv->H, conv->W, conv->k1, conv->);
cudaDeviceSynchronize();
size_t outputSize = conv->D * conv ->H * conv->W * sizeof(float);
cudaMemcpy(outputData, conv-device_output, outputSize, cudaMemcpyDevicetoHost);
}
void conv3d_free(Conv3D* conv) {
cudaFree(conv->device_input);
cudaFree(conv->device_kernel);
cudaFree(conv->device_output;)
}
extern "C" void launch_conv3d_kerneæ(const float* d_input, const float* d_kernel, float* output, int D, int H, int W, int k1, int k2, int k3) {
dim3 blockSize(8, 8, 8);
dim3 gridSize((W + blockSize.x -1) / blockSize.x, (H + blockSize.y - 1) / blockSize.y, (D + blockSize.z - 1) / blockSize.z);
conv3d_kernel<<<gridSize, blockSize>>>(d_input, d_kernel, d_output, D, H, W, k1, k2, k3);
cudaDeviceSynchronize();
}
*/
#include "conv3d.h"
#include <cuda_runtime.h>
#include <stdio.h>
__global__ void conv3d_kernel(float* input, float* weights, float* biases, float* output, int D, int H, int W, int kD, int kH, int kW) {
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
int z = blockIdx.z * blockDim.z + threadIdx.z;
if (x < W && y < H && z < D) {
float value = biases[0]; // Assuming a single bias value for simplicity
for (int kd = 0; kd < kD; kd++) {
for (int kh = 0; kh < kH; kh++) {
for (int kw = 0; kw < kW; kw++) {
int in_d = z - kd + kD / 2;
int in_h = y - kh + kH / 2;
int in_w = x - kw + kW / 2;
if (in_d >= 0 && in_d < D && in_h >= 0 && in_h < H && in_w >= 0 && in_w < W) {
value += input[(in_d * H + in_h) * W + in_w] * weights[(kd * kH + kh) * kW + kw];
}
}
}
}
output[(z * H + y) * W + x] = value;
}
}
void conv3d_init(Conv3D* conv, int inputDepth, int inputHeight, int inputWidth, int kernelD, int kernelH, int kernelW) {
conv->D = inputDepth;
conv->H = inputHeight;
conv->W = inputWidth;
conv->kernelD = kernelD;
conv->kernelH = kernelH;
conv->kernelW = kernelW;
/*
conv->weights = (float*)malloc(kernelD * kernelH * kernelW * sizeof(float));
conv->biases = (float*)malloc(sizeof(float));
conv->grad_weights = (float*)malloc(kernelD * kernelH * kernelW * sizeof(float));
conv->grad_biases = (float*)malloc(sizeof(float));
*/
cudaMalloc(&(conv->weights), kernelD * kernelH * kernelW * sizeof(float));
cudaMalloc(&(conv->biases), sizeof(float));
cudaMalloc(&(conv->grad_weights), kernelD * kernelH * kernelW * sizeof(float));
cudaMalloc(&(conv->grad_biases), sizeof(float));
// Initialize weights and biases
for (int i = 0; i < kernelD * kernelH * kernelW; i++) {
conv->weights[i] = (float)rand() / RAND_MAX;
}
conv->biases[0] = (float)rand() / RAND_MAX;
}
void conv3d_set_input(Conv3D* conv, float* input) {
conv->input = input;
}
void conv3d_execute(Conv3D* conv, float* output) {
conv->output = output;
dim3 blockDim(8, 8, 8);
dim3 gridDim((conv->W + blockDim.x - 1) / blockDim.x, (conv->H + blockDim.y - 1) / blockDim.y, (conv->D + blockDim.z - 1) / blockDim.z);
conv3d_kernel<<<gridDim, blockDim>>>(conv->input, conv->weights, conv->biases, conv->output, conv->D, conv->H, conv->W, conv->kernelD, conv->kernelH, conv->kernelW);
}
void conv3d_backprop(Conv3D* conv, float* grad_output, float* grad_input) {
cudaMemset(conv->grad_weights, 0, conv->kernelD * conv->kernelH * conv->kernelW * sizeof(float));
cudaMemset(conv->grad_biases, 0, sizeof(float));
dim3 blockDim(8, 8, 8);
dim3 gridDim((conv->W + blockDim.x - 1) / blockDim.x, (conv->H + blockDim.y - 1) / blockDim.y, (conv->D + blockDim.z - 1) / blockDim.z);
conv3d_backward_kernel<<<gridDim, blockDim>>>(conv->input, conv->weights, conv->biases, grad_output, grad_input, conv->grad_weights, conv->grad_biases, conv->D, conv->H, conv->W, conv->kernelD, conv->kernelH, conv->kernelW);
cudaErrorCheck();
}
void conv3d_update_weights(Conv3D* conv, float learning_rate) {
float* h_grad_weights = (float*)malloc(conv->kernelD * conv->kernelH * conv->kernelW * sizeof(float));
float* h_grad_biases = (float*)malloc(sizeof(float));
cudaMemcpy(h_grad_weights, conv->grad_weights, conv->kernelD * conv->kernelH * conv->kernelW * sizeof(float), cudaMemcpyDeviceToHost);
cudaMemcpy(h_grad_biases, conv->grad_biases, sizeof(float), cudaMemcpyDeviceToHost);
for (int i = 0; i < conv->kernelD * conv->kernelH * conv->kernelW; i++) {
h_grad_weights[i] *= learning_rate;
}
h_grad_biases[0] *= learning_rate;
cudaMemcpy(conv->weights, h_grad_weights, conv->kernelD * conv->kernelH * conv->kernelW * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(conv->biases, h_grad_biases, sizeof(float), cudaMemcpyHostToDevice);
free(h_grad_weights);
free(h_grad_biases);
}
void conv3d_free(Conv3D* conv) {
free(conv->weights);
free(conv->biases);
free(conv->grad_weights);
free(conv->grad_biases);
}