-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtools.py
76 lines (65 loc) · 2.06 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
from typing import Union
import numpy as np
from dotenv import load_dotenv
from openai import __version__ as openai_version, OpenAI
from tqdm import tqdm
load_dotenv()
openai_client = OpenAI(api_key=os.getenv("OPENAI_API"))
def word_wrap(string, n_chars=80):
# Wrap a string at the next space after n_chars
if len(string) < n_chars:
return string
else:
return (
string[:n_chars].rsplit(" ", 1)[0]
+ "\n"
+ word_wrap(string[len(string[:n_chars].rsplit(" ", 1)[0]) + 1 :], n_chars)
)
def project_embeddings(embeddings, umap_transform):
umap_embeddings = np.empty((len(embeddings), 2))
for i, embedding in enumerate(tqdm(embeddings)):
umap_embeddings[i] = umap_transform.transform([embedding])
return umap_embeddings
def call_openai(
messages,
model,
temperature=0.5,
max_tokens=None,
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0,
n=1,
) -> Union[str, list[str]]:
if openai_version.startswith("0."):
completion = openai_client.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
n=n,
)
if n == 1:
return completion.choices[0].message["content"]
else:
return [c.message["content"] for c in completion.choices]
else:
completion = openai_client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
n=n,
)
if n == 1:
return completion.choices[0].message.content
else:
return [c.message.content for c in completion.choices]
if __name__ == "__main__":
word_wrap("test")