forked from DataIntelligenceCrew/go-faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.go
241 lines (202 loc) · 6.11 KB
/
index.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
package faiss
/*
#include <stdlib.h>
#include <faiss/c_api/Index_c.h>
#include <faiss/c_api/impl/AuxIndexStructures_c.h>
#include <faiss/c_api/index_factory_c.h>
#include <faiss/c_api/gpu/StandardGpuResources_c.h>
#include <faiss/c_api/gpu/GpuAutoTune_c.h>
*/
import "C"
import "unsafe"
// Index is a Faiss index.
//
// Note that some index implementations do not support all methods.
// Check the Faiss wiki to see what operations an index supports.
type Index interface {
// D returns the dimension of the indexed vectors.
D() int
// IsTrained returns true if the index has been trained or does not require
// training.
IsTrained() bool
// Ntotal returns the number of indexed vectors.
Ntotal() int64
// MetricType returns the metric type of the index.
MetricType() int
// Train trains the index on a representative set of vectors.
Train(x []float32) error
// Add adds vectors to the index.
Add(x []float32) error
// AddWithIDs is like Add, but stores xids instead of sequential IDs.
AddWithIDs(x []float32, xids []int64) error
// Search queries the index with the vectors in x.
// Returns the IDs of the k nearest neighbors for each query vector and the
// corresponding distances.
Search(x []float32, k int64) (distances []float32, labels []int64, err error)
// RangeSearch queries the index with the vectors in x.
// Returns all vectors with distance < radius.
RangeSearch(x []float32, radius float32) (*RangeSearchResult, error)
// Reset removes all vectors from the index.
Reset() error
// RemoveIDs removes the vectors specified by sel from the index.
// Returns the number of elements removed and error.
RemoveIDs(sel *IDSelector) (int, error)
// Delete frees the memory used by the index.
Delete()
cPtr() *C.FaissIndex
cGpuResource() []*C.FaissStandardGpuResources
cGpuMultipleClonerOptions() *C.FaissGpuMultipleClonerOptions
}
type faissIndex struct {
idx *C.FaissIndex
resources []*C.FaissStandardGpuResources
options *C.FaissGpuMultipleClonerOptions
}
func (idx *faissIndex) cGpuResource() []*C.FaissStandardGpuResources {
return idx.resources
}
func (idx *faissIndex) cGpuMultipleClonerOptions() *C.FaissGpuMultipleClonerOptions {
return idx.options
}
func (idx *faissIndex) cPtr() *C.FaissIndex {
return idx.idx
}
func (idx *faissIndex) D() int {
return int(C.faiss_Index_d(idx.idx))
}
func (idx *faissIndex) IsTrained() bool {
return C.faiss_Index_is_trained(idx.idx) != 0
}
func (idx *faissIndex) Ntotal() int64 {
return int64(C.faiss_Index_ntotal(idx.idx))
}
func (idx *faissIndex) MetricType() int {
return int(C.faiss_Index_metric_type(idx.idx))
}
func (idx *faissIndex) Train(x []float32) error {
n := len(x) / idx.D()
if c := C.faiss_Index_train(idx.idx, C.idx_t(n), (*C.float)(&x[0])); c != 0 {
return getLastError()
}
return nil
}
func (idx *faissIndex) Add(x []float32) error {
n := len(x) / idx.D()
if c := C.faiss_Index_add(idx.idx, C.idx_t(n), (*C.float)(&x[0])); c != 0 {
return getLastError()
}
return nil
}
func (idx *faissIndex) AddWithIDs(x []float32, xids []int64) error {
n := len(x) / idx.D()
if c := C.faiss_Index_add_with_ids(
idx.idx,
C.idx_t(n),
(*C.float)(&x[0]),
(*C.idx_t)(&xids[0]),
); c != 0 {
return getLastError()
}
return nil
}
func (idx *faissIndex) Search(x []float32, k int64) (
distances []float32, labels []int64, err error,
) {
n := len(x) / idx.D()
distances = make([]float32, int64(n)*k)
labels = make([]int64, int64(n)*k)
if c := C.faiss_Index_search(
idx.idx,
C.idx_t(n),
(*C.float)(&x[0]),
C.idx_t(k),
(*C.float)(&distances[0]),
(*C.idx_t)(&labels[0]),
); c != 0 {
err = getLastError()
}
return
}
func (idx *faissIndex) RangeSearch(x []float32, radius float32) (
*RangeSearchResult, error,
) {
n := len(x) / idx.D()
var rsr *C.FaissRangeSearchResult
if c := C.faiss_RangeSearchResult_new(&rsr, C.idx_t(n)); c != 0 {
return nil, getLastError()
}
if c := C.faiss_Index_range_search(
idx.idx,
C.idx_t(n),
(*C.float)(&x[0]),
C.float(radius),
rsr,
); c != 0 {
return nil, getLastError()
}
return &RangeSearchResult{rsr}, nil
}
func (idx *faissIndex) Reset() error {
if c := C.faiss_Index_reset(idx.idx); c != 0 {
return getLastError()
}
return nil
}
func (idx *faissIndex) RemoveIDs(sel *IDSelector) (int, error) {
var nRemoved C.size_t
if c := C.faiss_Index_remove_ids(idx.idx, sel.sel, &nRemoved); c != 0 {
return 0, getLastError()
}
return int(nRemoved), nil
}
func (idx *faissIndex) Delete() {
C.faiss_Index_free(idx.idx)
}
// RangeSearchResult is the result of a range search.
type RangeSearchResult struct {
rsr *C.FaissRangeSearchResult
}
// Nq returns the number of queries.
func (r *RangeSearchResult) Nq() int {
return int(C.faiss_RangeSearchResult_nq(r.rsr))
}
// Lims returns a slice containing start and end indices for queries in the
// distances and labels slices returned by Labels.
func (r *RangeSearchResult) Lims() []int {
var lims *C.size_t
C.faiss_RangeSearchResult_lims(r.rsr, &lims)
length := r.Nq() + 1
return (*[1 << 30]int)(unsafe.Pointer(lims))[:length:length]
}
// Labels returns the unsorted IDs and respective distances for each query.
// The result for query i is labels[lims[i]:lims[i+1]].
func (r *RangeSearchResult) Labels() (labels []int64, distances []float32) {
lims := r.Lims()
length := lims[len(lims)-1]
var clabels *C.idx_t
var cdist *C.float
C.faiss_RangeSearchResult_labels(r.rsr, &clabels, &cdist)
labels = (*[1 << 30]int64)(unsafe.Pointer(clabels))[:length:length]
distances = (*[1 << 30]float32)(unsafe.Pointer(cdist))[:length:length]
return
}
// Delete frees the memory associated with r.
func (r *RangeSearchResult) Delete() {
C.faiss_RangeSearchResult_free(r.rsr)
}
// IndexImpl is an abstract structure for an index.
type IndexImpl struct {
Index
}
// IndexFactory builds a composite index.
// description is a comma-separated list of components.
func IndexFactory(d int, description string, metric int) (*IndexImpl, error) {
cdesc := C.CString(description)
defer C.free(unsafe.Pointer(cdesc))
var idx faissIndex
c := C.faiss_index_factory(&idx.idx, C.int(d), cdesc, C.FaissMetricType(metric))
if c != 0 {
return nil, getLastError()
}
return &IndexImpl{&idx}, nil
}