-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
515 lines (409 loc) · 17.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
# -*- coding: utf-8 -*-
# Copyright © 2019 LeonTao
#
# Distributed under terms of the MIT license.
import os
import sys
import random
import math
import time
import argparse
from tqdm import tqdm
import torch
import torch.optim as optim
import torch.nn.functional as F
from gan_ael import GANAEL
from misc.dataset import build_iterator, PAD_TOKEN, SOS_TOKEN, EOS_TOKEN
from modules.early_stopping import EarlyStopping
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, help='')
parser.add_argument('--vocab_size', type=int, help='')
parser.add_argument('--max_vocab_size', type=float, help='')
parser.add_argument('--min_freq', type=int, default=2, help='')
parser.add_argument('--embedding_size', type=int)
parser.add_argument('--hidden_size', type=int)
parser.add_argument('--bidirectional', action='store_true')
parser.add_argument('--num_layers', type=int)
parser.add_argument('--in_channels', type=int)
parser.add_argument('--out_channels', type=int)
# https://stackoverflow.com/questions/15753701/argparse-option-for-passing-a-list-as-option/15753721#15753721
parser.add_argument('--kernel_heights', nargs='+', type=int, help='')
parser.add_argument('--stride', type=int)
parser.add_argument('--padding', type=int)
parser.add_argument('--dropout', type=float)
parser.add_argument('--lr_g', type=float, default=0.001)
parser.add_argument('--lr_d', type=float, default=0.001)
parser.add_argument('--max_grad_norm', type=float, default=0.0)
parser.add_argument('--min_len', type=int, default=5)
parser.add_argument('--q_max_len', type=int, default=60)
parser.add_argument('--r_max_len', type=int, default=60)
parser.add_argument('--batch_size', type=int, help='')
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--start_epoch', type=int, default=1)
parser.add_argument('--es_patience', type=int, help='early stopping patience.')
parser.add_argument('--lr_patience', type=int,
help='Number of epochs with no improvement after which learning rate will be reduced')
parser.add_argument('--device', type=str, help='cpu or cuda')
parser.add_argument('--save_model', type=str, help='save path')
parser.add_argument('--save_mode', type=str,
choices=['all', 'best'], default='best')
parser.add_argument('--checkpoint', type=str, help='checkpoint path')
parser.add_argument('--log', type=str, help='save log.')
parser.add_argument('--seed', type=str, help='random seed', default=23)
args = parser.parse_args()
print(' '.join(sys.argv))
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
device = torch.device(args.device)
args.device = device
args.max_vocab_size = int(args.max_vocab_size)
train_iterator, valid_iterator, vocab = build_iterator(args)
PAD_ID = vocab.stoi.get(PAD_TOKEN)
SOS_ID = vocab.stoi.get(SOS_TOKEN)
EOS_ID = vocab.stoi.get(EOS_TOKEN)
print('PAD_ID: ', PAD_ID)
print('SOS_ID: ', SOS_ID)
print('EOS_ID: ', EOS_ID)
# print('vocab_size: ', len(vocab))
args.vocab_size = len(vocab)
print('vocab_size: ', args.vocab_size)
# model
model = GANAEL(args).to(device)
print(model)
optimizer_G = optim.Adam(
filter(lambda x: x.requires_grad, model.generator.parameters()),
args.lr_g,
betas=(0.9, 0.98),
eps=1e-09
)
optimizer_D = optim.Adam(
filter(lambda x: x.requires_grad, model.discriminator.parameters()),
args.lr_d,
betas=(0.9, 0.98),
eps=1e-09
)
class GeneratorTraining:
def __init__(self,):
# early stopping
self.early_stopping = EarlyStopping(
type='min',
min_delta=0.0001,
patience=args.es_patience
)
pass
def train_epochs(self):
''' Start training '''
log_train_file = None
log_valid_file = None
if args.log:
log_train_file = os.path.join(args.log, 'G.train.log')
log_valid_file = os.path.join(args.log, 'G.valid.log')
print('[Info] Training performance will be written to file: {} and {}'.format(
log_train_file, log_valid_file))
with open(log_train_file, 'w') as log_tf, open(log_valid_file, 'w') as log_vf:
log_tf.write('epoch,loss,ppl,accuracy\n')
log_vf.write('epoch,loss,ppl,accuracy\n')
valid_accus = []
for epoch in range(args.start_epoch, args.epochs + 1):
print('[ G Epoch', epoch, ']')
start = time.time()
train_loss, train_accu = self.train(epoch)
print(' (Training) ppl: {ppl: 8.5f}, accuracy: {accu:3.3f} %, '
'elapse: {elapse:3.3f} min'.format(
ppl=math.exp(min(train_loss, 100)),
accu=100*train_accu,
elapse=(time.time()-start)/60))
start = time.time()
valid_loss, valid_accu = eval(epoch)
print(' (Validation) ppl: {ppl: 8.5f}, accuracy: {accu:3.3f} %, '
'elapse: {elapse:3.3f} min'.format(
ppl=math.exp(min(valid_loss, 100)),
accu=100*valid_accu,
elapse=(time.time()-start)/60))
valid_accus += [valid_accu]
checkpoint = {
'model': model.generator.state_dict(),
'args': args,
'epoch': epoch,
'optimizer_G': optimizer_G.state_dict(),
'valid_loss': valid_loss,
'valid_accu': valid_accu
}
if args.save_model:
if args.save_mode == 'all':
model_name = os.path.join(
args.save_model, 'G.accu_{accu:3.3f}.pth'.format(accu=100*valid_accu))
torch.save(checkpoint, model_name)
elif args.save_mode == 'best':
model_name = os.path.join(args.save_model, 'G.best.pth')
if valid_accu >= max(valid_accus):
torch.save(checkpoint, model_name)
print(' - [Info] The checkpoint file has been updated.')
if log_train_file and log_valid_file:
with open(log_train_file, 'a') as log_tf, open(log_valid_file, 'a') as log_vf:
log_tf.write('{epoch}, {loss: 8.5f}, {ppl: 8.5f}, {accu:3.3f}\n'.format(
epoch=epoch,
loss=train_loss,
ppl=math.exp(min(train_loss, 100)),
accu=100*train_accu))
log_vf.write('{epoch}, {loss: 8.5f}, {ppl: 8.5f}, {accu:3.3f}\n'.format(
epoch=epoch,
loss=valid_loss,
ppl=math.exp(min(valid_loss, 100)),
accu=100*valid_accu))
# is early_stopping
is_stop = self.early_stopping.step(valid_loss)
if is_stop:
print('Early Stopping.\n')
return
def train(self, epoch):
''' Epoch operation in training phase'''
model.generator.train()
# model.discriminator.eval()
total_loss = 0
n_word_total = 0
n_word_correct = 0
for batch in tqdm(
train_iterator, mininterval=2,
desc=' (Training: %d) ' % epoch, leave=False):
q_inputs, q_inputs_len, r_inputs, r_inputs_len = batch
r_targets = r_inputs[1:, :]
r_inputs = r_inputs[:-1, :]
loss = 0
optimizer_G.zero_grad()
outputs = model.generator_forward( q_inputs, q_inputs_len, r_inputs)
# backward
loss, n_correct = self.cal_performance(outputs, r_targets)
loss.backward()
# update parameters
optimizer_G.step()
# note keeping
total_loss += loss.item()
non_pad_mask = r_targets.ne(PAD_ID)
n_word = non_pad_mask.sum().item()
n_word_total += n_word
n_word_correct += n_correct
loss_per_word = total_loss/n_word_total
accuracy = n_word_correct/n_word_total
return loss_per_word, accuracy
def eval(self, epoch):
''' Epoch operation in evaluation phase '''
model.generator.eval()
total_loss = 0
n_word_total = 0
n_word_correct = 0
with torch.no_grad():
for batch in tqdm(
valid_iterator, mininterval=2,
desc=' (Validation: %d) ' % epoch, leave=False):
q_inputs, q_inputs_len, r_inputs, r_inputs_len = batch
r_targets = r_inputs[1:, :]
r_inputs = r_inputs[:-1, :]
outputs = model.generator_forward(q_inputs, q_inputs_len, r_inputs)
# backward
loss, n_correct = self.cal_performance(outputs, r_targets)
# note keeping
total_loss += loss.item()
non_pad_mask = r_targets.ne(PAD_ID)
n_word = non_pad_mask.sum().item()
n_word_total += n_word
n_word_correct += n_correct
loss_per_word = total_loss/n_word_total
accuracy = n_word_correct/n_word_total
return loss_per_word, accuracy
def cal_performance(self, pred, gold, smoothing=False):
''' Apply label smoothing if needed '''
# pred: [max_len * batch_size, vocab_size]
# gold: [max_len, batch_size]
loss = self.cal_loss(pred, gold, smoothing)
pred = pred.max(1)[1]
gold = gold.contiguous().view(-1)
non_pad_mask = gold.ne(PAD_ID)
n_correct = pred.eq(gold)
n_correct = n_correct.masked_select(non_pad_mask).sum().item()
return loss, n_correct
def cal_loss(self, pred, gold, smoothing):
''' Calculate cross entropy loss, apply label smoothing if needed. '''
# [max_len * batch_size]
gold = gold.contiguous().view(-1)
if smoothing:
eps = 0.1
n_class = pred.size(1)
one_hot = torch.zeros_like(pred).scatter(1, gold.view(-1, 1), 1)
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
log_prb = F.log_softmax(pred, dim=1)
non_pad_mask = gold.ne(PAD_ID)
loss = -(one_hot * log_prb).sum(dim=1)
loss = loss.masked_select(non_pad_mask).sum() # average later
else:
loss = F.cross_entropy(pred, gold, ignore_index=PAD_ID, reduction='sum')
return loss
class DiscriminatorTraining:
def __init__(self):
# early stopping
self.early_stopping = EarlyStopping(
type='min',
min_delta=0.0001,
patience=args.es_patience
)
def train_epochs(self):
''' Start training '''
log_train_file = None
log_valid_file = None
if args.log:
log_train_file = os.path.join(args.log, 'D.train.log')
log_valid_file = os.path.join(args.log, 'D.valid.log')
print('[Info] Training performance will be written to file: {} and {}'.format(
log_train_file, log_valid_file))
with open(log_train_file, 'w') as log_tf, open(log_valid_file, 'w') as log_vf:
log_tf.write('epoch,loss\n')
log_vf.write('epoch,loss\n')
valid_losses = []
for epoch in range(args.start_epoch, args.epochs + 1):
print('[ D Epoch', epoch, ']')
start = time.time()
train_loss = self.train(epoch)
print(' (Training) loss: {loss:3.3f}, elapse: {elapse:3.3f} min'.format(
loss=train_loss,
elapse=(time.time()-start)/60))
start = time.time()
valid_loss = eval(epoch)
print(' (Validation) loss: {loss:3.3f} %, '
'elapse: {elapse:3.3f} min'.format(
loss=valid_loss,
elapse=(time.time()-start)/60))
valid_losses += [valid_loss]
checkpoint = {
'model': model.discriminator.state_dict(),
'args': args,
'epoch': epoch,
'optimizer_D': optimizer_D.state_dict(),
'valid_loss': valid_loss,
}
if args.save_model:
if args.save_mode == 'all':
model_name = os.path.join(args.save_model,
'D.loss_{loss:3.3f}.pth'.format(accu=valid_loss))
torch.save(checkpoint, model_name)
elif args.save_mode == 'best':
model_name = os.path.join(args.save_model, 'D.best.pth')
if valid_loss <= min(valid_losses):
torch.save(checkpoint, model_name)
print(' - [Info] The checkpoint file has been updated.')
if log_train_file and log_valid_file:
with open(log_train_file, 'a') as log_tf, open(log_valid_file, 'a') as log_vf:
log_tf.write('{epoch}, {loss: 8.5f}\n'.format(epoch=epoch, loss=train_loss))
log_vf.write('{epoch}, {loss: 8.5f}\n'.format(epoch=epoch, loss=valid_loss))
# is early_stopping
is_stop = self.early_stopping.step(valid_loss)
if is_stop:
print('Early Stopping.\n')
return
def train(self, epoch):
''' Epoch operation in training phase'''
model.discriminator.train()
# model.generator.eval()
total_loss = 0
times = 0
for batch in tqdm(
train_iterator, mininterval=2,
desc=' (Training: %d) ' % epoch, leave=False):
q_inputs, q_inputs_len, r_inputs, r_inputs_len = batch
# generator fake embedded
sos_input = torch.ones(1, self.config.batch_size, dtype=torch.long, device=device) * SOS_ID
fake_embedded = model.generator.approximate(q_inputs, q_inputs_len, sos_input)
# [batch_size], fake and real
fake_outputs, real_outputs = model.discriminator_forward(q_inputs, r_inputs, fake_embedded)
# backward
loss = torch.log(real_outputs) + torch.log(1.0 - fake_outputs)
# forward
optimizer_D.zero_grad()
loss.backward()
# update parameters
optimizer_D.step()
# note keeping
total_loss += loss.item()
times += 1
loss_avg = total_loss / times
return loss_avg
def eval(self, epoch):
''' Epoch operation in evaluation phase '''
model.discriminator.eval()
total_loss = 0
times = 0
with torch.no_grad():
for batch in tqdm(
valid_iterator, mininterval=2,
desc=' (Validation: %d) ' % epoch, leave=False):
q_inputs, q_inputs_len, r_inputs, r_inputs_len = batch
# generator fake embedded
sos_input = torch.ones(1, self.config.batch_size, dtype=torch.long, device=device) * SOS_ID
fake_embedded = model.generator.approximate(q_inputs, q_inputs_len, sos_input)
# [batch_size], fake and real
fake_outputs, real_outputs = model.discriminator_forward(q_inputs, r_inputs, fake_embedded)
# backward
loss = - torch.mean(torch.log(fake_outputs) + torch.log(1. - real_outputs))
# note keeping
total_loss += loss.item()
times += 1
loss_avg = total_loss / times
return loss_avg
class AdversarialTraining:
def __init__(self):
pass
def train_epochs(self):
for epoch in range(args.start_epoch, args.epochs + 1):
print('[ A Epoch', epoch, ']')
start = time.time()
train_loss_G, train_loss_D = self.train(epoch)
print(' (Training) loss_G: {loss_G:3.3f}, loss_D: {loss_D: 3.3f}, elapse: {elapse:3.3f} min'.format(
loss_G=train_loss_G,
loss_D=train_loss_D,
elapse=(time.time()-start)/60))
def train(self, epoch):
model.discriminator.train()
model.generator.train()
# model.generator.encoder.requires_grad = False
# model.generator.decoder.ael.fc = False
total_loss_G = 0
total_loss_D = 0
times = 0
for batch in tqdm(
train_iterator, mininterval=2,
desc=' (Training: %d) ' % epoch, leave=False):
q_inputs, q_inputs_len, r_inputs, r_inputs_len = batch
sos_input = torch.ones(1, self.config.batch_size, dtype=torch.long, device=device) * SOS_ID
fake_outputs, real_outputs = model(q_inputs, q_inputs_len, r_inputs, sos_input)
# backward
loss_D = -torch.mean(torch.log(real_outputs) + torch.log(1. - fake_outputs))
# loss_G = torch.mean(torch.log(1. - fake_outputs))
loss_G = torch.mean(real_outputs - fake_outputs)
# update parameters
optimizer_D.zero_grad()
loss_D.backward()
optimizer_D.step()
optimizer_G.zero_grad()
loss_G.backward()
optimizer_G.step()
total_loss_G += loss_G.item()
total_loss_D += loss_D.item()
times += 1
loss_avg_G = total_loss_G / times
loss_avg_D = total_loss_D / times
return loss_avg_G, loss_avg_D
if __name__ == '__main__':
# train G
gt = GeneratorTraining()
print('generator training ...')
gt.train_epochs()
print('End of generator training ...')
# train D
dt = DiscriminatorTraining()
print('discriminator training ...')
dt.train_epochs()
print('End of discriminator training ...')
# Adversarial
at = AdversarialTraining()
print('adversarial training ...')
at.train_epochs()