forked from gcorso/DiffDock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
223 lines (187 loc) · 12.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import copy
import math
import os
import shutil
from functools import partial
import wandb
import torch
torch.multiprocessing.set_sharing_strategy('file_system')
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (64000, rlimit[1]))
import yaml
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl, t_to_sigma_individual
from datasets.loader import construct_loader
from utils.parsing import parse_train_args
from utils.training import train_epoch, test_epoch, loss_function, inference_epoch_fix
from utils.utils import save_yaml_file, get_optimizer_and_scheduler, get_model, ExponentialMovingAverage
def train(args, model, optimizer, scheduler, ema_weights, train_loader, val_loader, t_to_sigma, run_dir, val_dataset2):
loss_fn = partial(loss_function, tr_weight=args.tr_weight, rot_weight=args.rot_weight,
tor_weight=args.tor_weight, no_torsion=args.no_torsion, backbone_weight=args.backbone_loss_weight,
sidechain_weight=args.sidechain_loss_weight)
best_val_loss = math.inf
best_val_inference_value = math.inf if args.inference_earlystop_goal == 'min' else 0
best_val_secondary_value = math.inf if args.inference_earlystop_goal == 'min' else 0
best_epoch = 0
best_val_inference_epoch = 0
freeze_params = 0
scheduler_mode = args.inference_earlystop_goal if args.val_inference_freq is not None else 'min'
if args.scheduler == 'layer_linear_warmup':
freeze_params = args.warmup_dur * (args.num_conv_layers + 2) - 1
print("Freezing some parameters until epoch {}".format(freeze_params))
print("Starting training...")
for epoch in range(args.n_epochs):
if epoch % 5 == 0: print("Run name: ", args.run_name)
if args.scheduler == 'layer_linear_warmup' and (epoch+1) % args.warmup_dur == 0:
step = (epoch+1) // args.warmup_dur
if step < args.num_conv_layers + 2:
print("New unfreezing step")
optimizer, scheduler = get_optimizer_and_scheduler(args, model, step=step, scheduler_mode=scheduler_mode)
elif step == args.num_conv_layers + 2:
print("Unfreezing all parameters")
optimizer, scheduler = get_optimizer_and_scheduler(args, model, step=step, scheduler_mode=scheduler_mode)
ema_weights = ExponentialMovingAverage(model.parameters(), decay=args.ema_rate)
elif args.scheduler == 'linear_warmup' and epoch == args.warmup_dur:
print("Moving to plateu scheduler")
optimizer, scheduler = get_optimizer_and_scheduler(args, model, step=1, scheduler_mode=scheduler_mode,
optimizer=optimizer)
logs = {}
train_losses = train_epoch(model, train_loader, optimizer, device, t_to_sigma, loss_fn, ema_weights if epoch > freeze_params else None)
print("Epoch {}: Training loss {:.4f} tr {:.4f} rot {:.4f} tor {:.4f} sc {:.4f} lr {:.4f}"
.format(epoch, train_losses['loss'], train_losses['tr_loss'], train_losses['rot_loss'],
train_losses['tor_loss'], train_losses['sidechain_loss'], optimizer.param_groups[0]['lr']))
if epoch > freeze_params:
ema_weights.store(model.parameters())
if args.use_ema: ema_weights.copy_to(model.parameters()) # load ema parameters into model for running validation and inference
val_losses = test_epoch(model, val_loader, device, t_to_sigma, loss_fn, args.test_sigma_intervals)
print("Epoch {}: Validation loss {:.4f} tr {:.4f} rot {:.4f} tor {:.4f} sc {:.4f}"
.format(epoch, val_losses['loss'], val_losses['tr_loss'], val_losses['rot_loss'], val_losses['tor_loss'], val_losses['sidechain_loss']))
if args.val_inference_freq != None and (epoch + 1) % args.val_inference_freq == 0:
inf_dataset = [val_loader.dataset.get(i) for i in range(min(args.num_inference_complexes, val_loader.dataset.__len__()))]
inf_metrics = inference_epoch_fix(model, inf_dataset, device, t_to_sigma, args)
print("Epoch {}: Val inference rmsds_lt2 {:.3f} rmsds_lt5 {:.3f} min_rmsds_lt2 {:.3f} min_rmsds_lt5 {:.3f}"
.format(epoch, inf_metrics['rmsds_lt2'], inf_metrics['rmsds_lt5'], inf_metrics['min_rmsds_lt2'], inf_metrics['min_rmsds_lt5']))
logs.update({'valinf_' + k: v for k, v in inf_metrics.items()}, step=epoch + 1)
if args.double_val and args.val_inference_freq != None and (epoch + 1) % args.val_inference_freq == 0:
inf_dataset = [val_dataset2.get(i) for i in range(min(args.num_inference_complexes, val_dataset2.__len__()))]
inf_metrics2 = inference_epoch_fix(model, inf_dataset, device, t_to_sigma, args)
print("Epoch {}: Val inference on second validation rmsds_lt2 {:.3f} rmsds_lt5 {:.3f} min_rmsds_lt2 {:.3f} min_rmsds_lt5 {:.3f}"
.format(epoch, inf_metrics2['rmsds_lt2'], inf_metrics2['rmsds_lt5'], inf_metrics2['min_rmsds_lt2'], inf_metrics2['min_rmsds_lt5']))
logs.update({'valinf2_' + k: v for k, v in inf_metrics2.items()}, step=epoch + 1)
logs.update({'valinfcomb_' + k: (v + inf_metrics[k])/2 for k, v in inf_metrics2.items()}, step=epoch + 1)
if args.train_inference_freq != None and (epoch + 1) % args.train_inference_freq == 0:
inf_dataset = [train_loader.dataset.get(i) for i in range(min(min(args.num_inference_complexes, 300), train_loader.dataset.__len__()))]
inf_metrics = inference_epoch_fix(model, inf_dataset, device, t_to_sigma, args)
print("Epoch {}: Train inference rmsds_lt2 {:.3f} rmsds_lt5 {:.3f} min_rmsds_lt2 {:.3f} min_rmsds_lt5 {:.3f}"
.format(epoch, inf_metrics['rmsds_lt2'], inf_metrics['rmsds_lt5'], inf_metrics['min_rmsds_lt2'], inf_metrics['min_rmsds_lt5']))
logs.update({'traininf_' + k: v for k, v in inf_metrics.items()}, step=epoch + 1)
if epoch > freeze_params:
if not args.use_ema: ema_weights.copy_to(model.parameters())
ema_state_dict = copy.deepcopy(model.module.state_dict() if device.type == 'cuda' else model.state_dict())
ema_weights.restore(model.parameters())
if args.wandb:
logs.update({'train_' + k: v for k, v in train_losses.items()})
logs.update({'val_' + k: v for k, v in val_losses.items()})
logs['current_lr'] = optimizer.param_groups[0]['lr']
wandb.log(logs, step=epoch + 1)
state_dict = model.module.state_dict() if device.type == 'cuda' else model.state_dict()
if args.inference_earlystop_metric in logs.keys() and \
(args.inference_earlystop_goal == 'min' and logs[args.inference_earlystop_metric] <= best_val_inference_value or
args.inference_earlystop_goal == 'max' and logs[args.inference_earlystop_metric] >= best_val_inference_value):
best_val_inference_value = logs[args.inference_earlystop_metric]
best_val_inference_epoch = epoch
torch.save(state_dict, os.path.join(run_dir, 'best_inference_epoch_model.pt'))
if epoch > freeze_params:
torch.save(ema_state_dict, os.path.join(run_dir, 'best_ema_inference_epoch_model.pt'))
if args.inference_secondary_metric is not None and args.inference_secondary_metric in logs.keys() and \
(args.inference_earlystop_goal == 'min' and logs[args.inference_secondary_metric] <= best_val_secondary_value or
args.inference_earlystop_goal == 'max' and logs[args.inference_secondary_metric] >= best_val_secondary_value):
best_val_secondary_value = logs[args.inference_secondary_metric]
if epoch > freeze_params:
torch.save(ema_state_dict, os.path.join(run_dir, 'best_ema_secondary_epoch_model.pt'))
if val_losses['loss'] <= best_val_loss:
best_val_loss = val_losses['loss']
best_epoch = epoch
torch.save(state_dict, os.path.join(run_dir, 'best_model.pt'))
if epoch > freeze_params:
torch.save(ema_state_dict, os.path.join(run_dir, 'best_ema_model.pt'))
if args.save_model_freq is not None and (epoch + 1) % args.save_model_freq == 0:
shutil.copyfile(os.path.join(run_dir, 'best_model.pt'),
os.path.join(run_dir, f'epoch{epoch+1}_best_model.pt'))
if scheduler:
if epoch < freeze_params or (args.scheduler == 'linear_warmup' and epoch < args.warmup_dur):
scheduler.step()
elif args.val_inference_freq is not None:
scheduler.step(best_val_inference_value)
else:
scheduler.step(val_losses['loss'])
torch.save({
'epoch': epoch,
'model': state_dict,
'optimizer': optimizer.state_dict(),
'ema_weights': ema_weights.state_dict(),
}, os.path.join(run_dir, 'last_model.pt'))
print("Best Validation Loss {} on Epoch {}".format(best_val_loss, best_epoch))
print("Best inference metric {} on Epoch {}".format(best_val_inference_value, best_val_inference_epoch))
def main_function():
args = parse_train_args()
if args.config:
config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in config_dict.items():
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
args.config = args.config.name
assert (args.inference_earlystop_goal == 'max' or args.inference_earlystop_goal == 'min')
if args.val_inference_freq is not None and args.scheduler is not None:
assert (args.scheduler_patience > args.val_inference_freq) # otherwise we will just stop training after args.scheduler_patience epochs
if args.cudnn_benchmark:
torch.backends.cudnn.benchmark = True
if args.wandb:
wandb.init(
entity='',
settings=wandb.Settings(start_method="fork"),
project=args.project,
name=args.run_name,
config=args
)
# construct loader
t_to_sigma = partial(t_to_sigma_compl, args=args)
train_loader, val_loader, val_dataset2 = construct_loader(args, t_to_sigma, device)
model = get_model(args, device, t_to_sigma=t_to_sigma)
optimizer, scheduler = get_optimizer_and_scheduler(args, model, scheduler_mode=args.inference_earlystop_goal if args.val_inference_freq is not None else 'min')
ema_weights = ExponentialMovingAverage(model.parameters(),decay=args.ema_rate)
if args.restart_dir:
try:
dict = torch.load(f'{args.restart_dir}/{args.restart_ckpt}.pt', map_location=torch.device('cpu'))
if args.restart_lr is not None: dict['optimizer']['param_groups'][0]['lr'] = args.restart_lr
optimizer.load_state_dict(dict['optimizer'])
model.module.load_state_dict(dict['model'], strict=True)
if hasattr(args, 'ema_rate'):
ema_weights.load_state_dict(dict['ema_weights'], device=device)
print("Restarting from epoch", dict['epoch'])
except Exception as e:
print("Exception", e)
dict = torch.load(f'{args.restart_dir}/best_model.pt', map_location=torch.device('cpu'))
model.module.load_state_dict(dict, strict=True)
print("Due to exception had to take the best epoch and no optimiser")
elif args.pretrain_dir:
dict = torch.load(f'{args.pretrain_dir}/{args.pretrain_ckpt}.pt', map_location=torch.device('cpu'))
model.module.load_state_dict(dict, strict=True)
print("Using pretrained model", f'{args.pretrain_dir}/{args.pretrain_ckpt}.pt')
numel = sum([p.numel() for p in model.parameters()])
print('Model with', numel, 'parameters')
if args.wandb:
wandb.log({'numel': numel})
# record parameters
run_dir = os.path.join(args.log_dir, args.run_name)
yaml_file_name = os.path.join(run_dir, 'model_parameters.yml')
save_yaml_file(yaml_file_name, args.__dict__)
args.device = device
train(args, model, optimizer, scheduler, ema_weights, train_loader, val_loader, t_to_sigma, run_dir, val_dataset2)
if __name__ == '__main__':
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
main_function()