-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMAD.py
194 lines (132 loc) · 8.13 KB
/
MAD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/env python3
import os
import sys
import pandas as pd
import base64
import os
import string
import csv
import argparse
import os
import pandas as pd
import numpy as np
import torch
import pickle
import sys
from Levenshtein import ratio
import Levenshtein
import langdetect
import re
from scipy.stats import pearsonr
from sklearn.metrics import precision_score, recall_score, confusion_matrix, mean_absolute_error, mean_squared_error, r2_score, make_scorer, roc_auc_score
from sklearn.metrics.pairwise import linear_kernel
from number_match import number_match_pair
from nltk.corpus import stopwords
sys.path.append( '/MAD/InferSent' )
#Load in the InferSent model.
#note: you need to use pytorch 0.4 to work with InferSent.
from models import InferSent
#Some functions to calculate the features:
def levenshtein(pair_of_sentences):
l = ratio(pair_of_sentences[0].lower(), pair_of_sentences[1].lower())
assert l >= 0 and l <=1
return l
def number_match(pair_of_sentences): return number_match_pair(pair_of_sentences)
def senlength(pair_of_sentences): return [len(pair_of_sentences[0]), len(pair_of_sentences[1])]
def calc_semantic_sim_infersent_batches( src_2_en, tgt_2_en, bs=1000, mini_batch_size=50 ):
'''
bs is the batch size so the calculation of linear kernel does not go out of memory. mini_batch_size is the batch size of InferSent.
'''
all_semantic_similarity = np.empty(( 0 ))
for i in range(0, len(src_2_en) , bs):
print('sentences processed', i )
embedding_src_2_en=model_infersent.encode( src_2_en[i:i+bs] , bsize=mini_batch_size, tokenize=True, verbose=False)
embedding_tgt_2_en=model_infersent.encode( tgt_2_en[i:i+bs] , bsize=mini_batch_size, tokenize=True, verbose=False)
semantic_similarity=np.diag( linear_kernel( embedding_src_2_en, embedding_tgt_2_en )) / (np.linalg.norm( embedding_src_2_en, axis=1 ) * np.linalg.norm( embedding_tgt_2_en, axis=1 ) )
all_semantic_similarity=np.append( all_semantic_similarity, semantic_similarity )
return all_semantic_similarity
def loss_r2(gold_lbls, pred_lbls): return (r2_score(gold_lbls,pred_lbls)) #AD: only use r2
scorer = make_scorer(loss_r2, greater_is_better=True)
#some helper functions:
def utility(gold_cls, pred_cls, p=0.33): return ( true_negative_rate(gold_cls, pred_cls)**(1-p)*recall_score(gold_cls, pred_cls)**p ) #AD: Calculate mean biased towards recall score.
def true_negative_rate(gold_cls, pred_cls): return confusion_matrix(gold_cls, pred_cls)[0,0]/(confusion_matrix(gold_cls, pred_cls)[0,0]+confusion_matrix(gold_cls, pred_cls)[0,1])
def root_relative_square_error(gold, pred):
from sklearn.metrics import mean_squared_error
return ( mean_squared_error( gold , pred ) / mean_squared_error( gold , np.repeat(np.mean(gold), len(gold) ) ) )**0.5
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--path_src", dest="path_src",
help="path to src sentences", required=True)
parser.add_argument("--path_tgt", dest="path_tgt",
help="path to tgt sentences", required=True)
parser.add_argument("--path_tgt_translated", dest="path_tgt_translated",
help="path to tgt sentences translated in src languages", required=True)
parser.add_argument("--output_folder", dest="output_folder",
help="path to output_folder", required=True)
parser.add_argument("--path_to_classifier", dest="path_to_classifier",
help="path to classifier", required=False , default='/MAD/models/estimator_SVC.save' )
parser.add_argument("--threshold_MAD", dest="threshold_MAD",
help="threshold for MAD", required=False , type=float, default= 2.21 )
args = parser.parse_args()
output_folder=args.output_folder
chosen_threshold=args.threshold_MAD #this was the optimal threshold found in 1-MAD_notebook.ipynb. This should actually be tuned on BLEU.
#Load InferSent model
model_version = 2
MODEL_PATH = "/MAD/InferSent/encoder/infersent%s.pkl" % model_version #AD: load in the InferSent model
params_model = {'bsize': 64, 'word_emb_dim': 300, 'enc_lstm_dim': 2048,
'pool_type': 'max', 'dpout_model': 0.0, 'version': model_version}
model_infersent = InferSent(params_model)
model_infersent.load_state_dict(torch.load(MODEL_PATH))
W2V_PATH='/MAD/InferSent/dataset/crawl-300d-2M.vec'
model_infersent.set_w2v_path(W2V_PATH)
# Load embeddings of K most frequent words
model_infersent.build_vocab_k_words(K=1000000)
print("InferSent model loaded")
#input: src, tgt, tgt.translated (to src, being English).
src=open( args.path_src , "r" ).read().split("\n")
src=src[:-1]
tgt=open( args.path_tgt , "r" ).read().split("\n")
tgt=tgt[:-1]
Txt_target_2_cross=open( args.path_tgt_translated ).read().split("\n")
Txt_target_2_cross=Txt_target_2_cross[:-1]
assert len( src ) == len( tgt )
assert len( src ) == len( Txt_target_2_cross )
#make a pandas dataframe of the data
data = pd.DataFrame(
{'Txt_source_0ri': src,
'Txt_target_0ri': tgt,
'Txt_target_2_cross': Txt_target_2_cross
})
data['Ft_source_cross_levenshtein'] = data.apply(lambda row: levenshtein((row['Txt_target_2_cross'], row['Txt_source_0ri'])) , axis=1)
#data['Ft_en_levenshtein'] = data.apply(lambda row: levenshtein((row['Txt_source_2_en_sys'], row['Txt_target_2_en_sys'])) , axis=1)
data['Ft_number_match'] = data.apply(lambda row: number_match( (row['Txt_source_0ri'], row['Txt_target_0ri'])) , axis=1)
data['Ft_senlength_av'] = data.apply(lambda row: np.mean( senlength( ( row[ 'Txt_source_0ri'] , row[ 'Txt_target_0ri' ] ) ) ) , axis=1)
data[ 'Ft_senlength_diff' ]=data.apply(lambda row: abs( senlength( ( row[ 'Txt_source_0ri' ], row[ 'Txt_target_0ri' ] ) ) [0] - \
senlength( ( row[ 'Txt_source_0ri' ], row[ 'Txt_target_0ri' ] ) )[1] ), axis=1)
#data['Ft_semantic_sim_bag_of_words'] = data.apply(lambda row: calc_cos_sim_bag_of_words((row['Txt_source_2_en_sys'], row['Txt_target_2_en_sys']) ,wv_model_en ) , axis=1)
print("calculate semantic similarity")
data[ 'Ft_semantic_sim_infersent' ] = calc_semantic_sim_infersent_batches( data['Txt_source_0ri'].tolist() , data['Txt_target_2_cross'].tolist() )
X=data.filter(regex='^Ft_.*').values #Get all the features
feature_names=data.filter(regex='^Ft_.*').columns
#the chosen features should match the features the estimator was trained on.
chosen_features=[ 'Ft_source_cross_levenshtein' , 'Ft_number_match' , 'Ft_senlength_av', 'Ft_senlength_diff', 'Ft_semantic_sim_infersent' ]
chosen_features_indices = []
for i in range( len( feature_names ) ):
if feature_names[i] in chosen_features:
chosen_features_indices.append( i )
#Load the trained estimator.
estimator = pickle.load(open( args.path_to_classifier , 'rb'))
predicted_labels=estimator.predict(X[:, chosen_features_indices ] )
predicted_classification=(predicted_labels> chosen_threshold ).astype(int) #AD: so if predicted label is larger than t==>then classified as misaligned.
data['predicted_classification']=predicted_classification
data['predicted_labels']=predicted_labels
print( 'classified as aligned %s or %.4f' %( ( len(predicted_classification) -np.sum(predicted_classification) ) \
, ( len(predicted_classification) -np.sum(predicted_classification) ) / len(predicted_classification) ) )
print( 'classified as misaligned %s or %.4f ' %( np.sum(predicted_classification) , ( np.sum(predicted_classification) ) / len(predicted_classification) ) )
MAD_scores=data.predicted_labels.tolist()
if os.path.exists( os.path.join( output_folder , f'MAD_scores' ) ):
os.remove( os.path.join( output_folder , f'MAD_scores' ) )
f = open( os.path.join( output_folder , f'MAD_scores' ), "a")
for MAD_score in MAD_scores:
f.write( "{0}\n".format( MAD_score ) )
f.close()