-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmock.py
38 lines (28 loc) · 953 Bytes
/
mock.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import tensorflow as tf
import tensorlayer as tl
class example(tl.layers.Layer):
def __init__(self, name=None):
super(example, self).__init__(name=name)
self.input_layer = []
for i in range(4):
self.input_layer.append(tl.layers.Dense(in_channels=50, n_units=50))
self.input_layers = tl.layers.LayerList(self.input_layer)
self.build(None)
self._built = True
def build(self, inputs_shape=None):
self.W = self._get_weights('weights', shape=(50, 10))
def forward(self, inputs):
for layer in self.input_layers:
inputs = layer(inputs)
output = tf.matmul(inputs, self.W)
return output
class model(tl.models.Model):
def __init__(self, name=None):
super(model, self).__init__(name=name)
self.layer = example()
def forward(self, inputs):
return self.layer(inputs)
input = tf.random.normal(shape=(100,50))
model_ = model()
model_.train()
print(model_(input))