forked from xingdi-eric-yuan/GATA-public
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
409 lines (347 loc) · 19.9 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import numpy as np
import torch
import os
from generic import get_match_result, to_np
def evaluate_with_ground_truth_graph(env, agent, num_games):
# here we do not eval command generation
achieved_game_points = []
total_game_steps = []
game_name_list = []
game_max_score_list = []
game_id = 0
while(True):
if game_id >= num_games:
break
obs, infos = env.reset()
# filter look and examine actions
for commands_ in infos["admissible_commands"]:
for cmd_ in [cmd for cmd in commands_ if cmd != "examine cookbook" and cmd.split()[0] in ["examine", "look"]]:
commands_.remove(cmd_)
game_name_list += [game.metadata["uuid"].split("-")[-1] for game in infos["game"]]
game_max_score_list += [game.max_score for game in infos["game"]]
batch_size = len(obs)
agent.eval()
agent.init()
chosen_actions, prev_step_dones = [], []
for _ in range(batch_size):
chosen_actions.append("restart")
prev_step_dones.append(0.0)
prev_h, prev_c = None, None
observation_strings, current_triplets, action_candidate_list, _, _ = agent.get_game_info_at_certain_step(obs, infos, prev_actions=None, prev_facts=None)
observation_strings = [item + " <sep> " + a for item, a in zip(observation_strings, chosen_actions)]
still_running_mask = []
final_scores = []
for step_no in range(agent.eval_max_nb_steps_per_episode):
# choose what to do next from candidate list
chosen_actions, chosen_indices, _, prev_h, prev_c = agent.act_greedy(observation_strings, current_triplets, action_candidate_list, prev_h, prev_c)
# send chosen actions to game engine
chosen_actions_before_parsing = [item[idx] for item, idx in zip(infos["admissible_commands"], chosen_indices)]
obs, scores, dones, infos = env.step(chosen_actions_before_parsing)
# filter look and examine actions
for commands_ in infos["admissible_commands"]:
for cmd_ in [cmd for cmd in commands_ if cmd != "examine cookbook" and cmd.split()[0] in ["examine", "look"]]:
commands_.remove(cmd_)
observation_strings, current_triplets, action_candidate_list, _, _ = agent.get_game_info_at_certain_step(obs, infos, prev_actions=None, prev_facts=None)
observation_strings = [item + " <sep> " + a for item, a in zip(observation_strings, chosen_actions)]
still_running = [1.0 - float(item) for item in prev_step_dones] # list of float
prev_step_dones = dones
final_scores = scores
still_running_mask.append(still_running)
# if all ended, break
if np.sum(still_running) == 0:
break
achieved_game_points += final_scores
still_running_mask = np.array(still_running_mask)
total_game_steps += np.sum(still_running_mask, 0).tolist()
game_id += batch_size
achieved_game_points = np.array(achieved_game_points, dtype="float32")
game_max_score_list = np.array(game_max_score_list, dtype="float32")
normalized_game_points = achieved_game_points / game_max_score_list
print_strings = []
print_strings.append("======================================================")
print_strings.append("EVAL: rewards: {:2.3f} | normalized reward: {:2.3f} | used steps: {:2.3f}".format(np.mean(achieved_game_points), np.mean(normalized_game_points), np.mean(total_game_steps)))
for i in range(len(game_name_list)):
print_strings.append("game name: {}, reward: {:2.3f}, normalized reward: {:2.3f}, steps: {:2.3f}".format(game_name_list[i], achieved_game_points[i], normalized_game_points[i], total_game_steps[i]))
print_strings.append("======================================================")
print_strings = "\n".join(print_strings)
print(print_strings)
return np.mean(achieved_game_points), np.mean(normalized_game_points), np.mean(total_game_steps), 0.0, print_strings
def evaluate(env, agent, num_games):
if agent.fully_observable_graph:
return evaluate_with_ground_truth_graph(env, agent, num_games)
achieved_game_points = []
total_game_steps = []
game_name_list = []
game_max_score_list = []
game_id = 0
while(True):
if game_id >= num_games:
break
obs, infos = env.reset()
# filter look and examine actions
for commands_ in infos["admissible_commands"]:
for cmd_ in [cmd for cmd in commands_ if cmd != "examine cookbook" and cmd.split()[0] in ["examine", "look"]]:
commands_.remove(cmd_)
game_name_list += [game.metadata["uuid"].split("-")[-1] for game in infos["game"]]
game_max_score_list += [game.max_score for game in infos["game"]]
batch_size = len(obs)
agent.eval()
agent.init()
triplets, chosen_actions, prev_game_facts = [], [], []
prev_step_dones = []
for _ in range(batch_size):
chosen_actions.append("restart")
prev_game_facts.append(set())
triplets.append([])
prev_step_dones.append(0.0)
prev_h, prev_c = None, None
observation_strings, current_triplets, action_candidate_list, _, current_game_facts = agent.get_game_info_at_certain_step(obs, infos, prev_actions=chosen_actions, prev_facts=None)
observation_strings = [item + " <sep> " + a for item, a in zip(observation_strings, chosen_actions)]
still_running_mask = []
final_scores = []
for step_no in range(agent.eval_max_nb_steps_per_episode):
# choose what to do next from candidate list
chosen_actions, chosen_indices, _, prev_h, prev_c = agent.act_greedy(observation_strings, current_triplets, action_candidate_list, prev_h, prev_c)
# send chosen actions to game engine
chosen_actions_before_parsing = [item[idx] for item, idx in zip(infos["admissible_commands"], chosen_indices)]
obs, scores, dones, infos = env.step(chosen_actions_before_parsing)
# filter look and examine actions
for commands_ in infos["admissible_commands"]:
for cmd_ in [cmd for cmd in commands_ if cmd != "examine cookbook" and cmd.split()[0] in ["examine", "look"]]:
commands_.remove(cmd_)
prev_game_facts = current_game_facts
observation_strings, current_triplets, action_candidate_list, _, current_game_facts = agent.get_game_info_at_certain_step(obs, infos, prev_actions=chosen_actions, prev_facts=prev_game_facts)
observation_strings = [item + " <sep> " + a for item, a in zip(observation_strings, chosen_actions)]
still_running = [1.0 - float(item) for item in prev_step_dones] # list of float
prev_step_dones = dones
final_scores = scores
still_running_mask.append(still_running)
# if all ended, break
if np.sum(still_running) == 0:
break
achieved_game_points += final_scores
still_running_mask = np.array(still_running_mask)
total_game_steps += np.sum(still_running_mask, 0).tolist()
game_id += batch_size
achieved_game_points = np.array(achieved_game_points, dtype="float32")
game_max_score_list = np.array(game_max_score_list, dtype="float32")
normalized_game_points = achieved_game_points / game_max_score_list
print_strings = []
print_strings.append("======================================================")
print_strings.append("EVAL: rewards: {:2.3f} | normalized reward: {:2.3f} | used steps: {:2.3f}".format(np.mean(achieved_game_points), np.mean(normalized_game_points), np.mean(total_game_steps)))
for i in range(len(game_name_list)):
print_strings.append("game name: {}, reward: {:2.3f}, normalized reward: {:2.3f}, steps: {:2.3f}".format(game_name_list[i], achieved_game_points[i], normalized_game_points[i], total_game_steps[i]))
print_strings.append("======================================================")
print_strings = "\n".join(print_strings)
print(print_strings)
return np.mean(achieved_game_points), np.mean(normalized_game_points), np.mean(total_game_steps), 0.0, print_strings
def evaluate_belief_mode(env, agent, num_games):
achieved_game_points = []
total_game_steps = []
total_command_generation_f1 = []
game_name_list = []
game_max_score_list = []
game_id = 0
while(True):
if game_id >= num_games:
break
obs, infos = env.reset()
# filter look and examine actions
for commands_ in infos["admissible_commands"]:
for cmd_ in [cmd for cmd in commands_ if cmd != "examine cookbook" and cmd.split()[0] in ["examine", "look"]]:
commands_.remove(cmd_)
game_name_list += [game.metadata["uuid"].split("-")[-1] for game in infos["game"]]
game_max_score_list += [game.max_score for game in infos["game"]]
batch_size = len(obs)
agent.eval()
agent.init()
triplets, chosen_actions, prev_game_facts = [], [], []
avg_command_generation_f1_in_a_game, prev_step_dones = [], []
for _ in range(batch_size):
chosen_actions.append("restart")
prev_game_facts.append(set())
triplets.append([])
avg_command_generation_f1_in_a_game.append([])
prev_step_dones.append(0.0)
prev_h, prev_c = None, None
observation_strings, _, action_candidate_list, target_command_strings, current_game_facts = agent.get_game_info_at_certain_step(obs, infos, prev_actions=chosen_actions, prev_facts=None, return_gt_commands=True)
observation_strings = [item + " <sep> " + a for item, a in zip(observation_strings, chosen_actions)]
still_running_mask = []
final_scores = []
for step_no in range(agent.eval_max_nb_steps_per_episode):
# generate triplets to update the observed info into KG
generated_commands = agent.command_generation_greedy_generation(observation_strings, triplets)
triplets = agent.update_knowledge_graph_triplets(triplets, generated_commands)
# choose what to do next from candidate list
chosen_actions, chosen_indices, _, prev_h, prev_c = agent.act_greedy(observation_strings, triplets, action_candidate_list, prev_h, prev_c)
# send chosen actions to game engine
chosen_actions_before_parsing = [item[idx] for item, idx in zip(infos["admissible_commands"], chosen_indices)]
obs, scores, dones, infos = env.step(chosen_actions_before_parsing)
# filter look and examine actions
for commands_ in infos["admissible_commands"]:
for cmd_ in [cmd for cmd in commands_ if cmd != "examine cookbook" and cmd.split()[0] in ["examine", "look"]]:
commands_.remove(cmd_)
# eval command generation
for i in range(batch_size):
_, _, exact_f1 = get_match_result(generated_commands[i], target_command_strings[i], type='exact')
avg_command_generation_f1_in_a_game[i].append(exact_f1)
prev_game_facts = current_game_facts
observation_strings, _, action_candidate_list, target_command_strings, current_game_facts = agent.get_game_info_at_certain_step(obs, infos, prev_actions=chosen_actions, prev_facts=prev_game_facts, return_gt_commands=True)
observation_strings = [item + " <sep> " + a for item, a in zip(observation_strings, chosen_actions)]
still_running = [1.0 - float(item) for item in prev_step_dones] # list of float
prev_step_dones = dones
final_scores = scores
still_running_mask.append(still_running)
# if all ended, break
if np.sum(still_running) == 0:
break
achieved_game_points += final_scores
still_running_mask = np.array(still_running_mask)
total_game_steps += np.sum(still_running_mask, 0).tolist()
total_command_generation_f1 += np.mean(avg_command_generation_f1_in_a_game, 1).tolist()
game_id += batch_size
achieved_game_points = np.array(achieved_game_points, dtype="float32")
game_max_score_list = np.array(game_max_score_list, dtype="float32")
normalized_game_points = achieved_game_points / game_max_score_list
print_strings = []
print_strings.append("======================================================")
print_strings.append("EVAL: rewards: {:2.3f} | normalized reward: {:2.3f} | used steps: {:2.3f} | command generation f1: {:2.3f}".format(np.mean(achieved_game_points), np.mean(normalized_game_points), np.mean(total_game_steps), np.mean(total_command_generation_f1)))
for i in range(len(game_name_list)):
print_strings.append("game name: {}, reward: {:2.3f}, normalized reward: {:2.3f}, steps: {:2.3f}, cmd gen f1: {:2.3f}".format(game_name_list[i], achieved_game_points[i], normalized_game_points[i], total_game_steps[i], total_command_generation_f1[i]))
print_strings.append("======================================================")
print_strings = "\n".join(print_strings)
print(print_strings)
return np.mean(achieved_game_points), np.mean(normalized_game_points), np.mean(total_game_steps), np.mean(total_command_generation_f1), print_strings
def evaluate_pretrained_command_generation(env, agent, valid_test="valid", verbose=False):
env.split_reset(valid_test)
agent.eval()
total_soft_f1, total_exact_f1 = [], []
counter = 0
to_print = []
while(True):
observation_strings, triplets, target_strings = env.get_batch()
pred_strings = agent.command_generation_greedy_generation(observation_strings, triplets)
for i in range(len(observation_strings)):
_, _, exact_f1 = get_match_result(pred_strings[i], target_strings[i], type='exact')
_, _, soft_f1 = get_match_result(pred_strings[i], target_strings[i], type='soft')
total_exact_f1.append(exact_f1)
total_soft_f1.append(soft_f1)
if verbose:
to_print.append(str(counter) + " -------------------------------------------- exact f1: " + str(exact_f1) + ", soft f1: " + str(soft_f1))
to_print.append("OBS: %s " % (observation_strings[i]))
trips = []
for t in triplets[i]:
trips.append(t[0] + "-" + t[2] + "-" + t[1])
to_print.append("TRIPLETS: %s " % (" | ".join(trips)))
to_print.append("PRED: %s " % (pred_strings[i]))
to_print.append("GT: %s " % (target_strings[i]))
to_print.append("")
counter += 1
if env.batch_pointer == 0:
break
with open(agent.experiment_tag + "_output.txt", "w") as f:
f.write("\n".join(to_print))
print("Hard F1: ", np.mean(np.array(total_exact_f1)), "Soft F1:", np.mean(np.array(total_soft_f1)))
return np.mean(np.array(total_exact_f1)), np.mean(np.array(total_soft_f1))
def evaluate_action_prediction(env, agent, valid_test="valid", verbose=False):
env.split_reset(valid_test)
agent.eval()
list_eval_acc, list_eval_loss = [], []
counter = 0
to_print = []
while(True):
current_graph, previous_graph, target_action, action_choices = env.get_batch()
with torch.no_grad():
loss, ap_ret, np_labels, action_choices = agent.get_action_prediction_logits(current_graph, previous_graph, target_action, action_choices)
loss = to_np(loss)
pred = np.argmax(ap_ret, -1) # batch
gt = np.argmax(np_labels, -1) # batch
correct = (pred == gt).astype("float32").tolist()
list_eval_acc += correct
list_eval_loss += [loss]
if verbose:
for i in range(len(current_graph)):
to_print.append(str(counter) + " -------------------------------------------- acc: " + str(correct[i]))
trips = []
for t in previous_graph[i]:
trips.append(t[0] + "-" + t[2] + "-" + t[1])
to_print.append("PREV TRIPLETS: %s " % (" | ".join(trips)))
trips = []
for t in current_graph[i]:
trips.append(t[0] + "-" + t[2] + "-" + t[1])
to_print.append("CURR TRIPLETS: %s " % (" | ".join(trips)))
to_print.append("PRED ACTION: %s " % (action_choices[i][pred[i]]))
to_print.append("GT ACTION: %s " % (target_action[i]))
to_print.append("")
counter += 1
if env.batch_pointer == 0:
break
with open(agent.experiment_tag + "_output.txt", "w") as f:
f.write("\n".join(to_print))
print("Eval Loss: {:2.3f}, Eval accuracy: {:2.3f}".format(np.mean(list_eval_loss), np.mean(list_eval_acc)))
return np.mean(list_eval_loss), np.mean(list_eval_acc)
def evaluate_state_prediction(env, agent, valid_test="valid", verbose=False):
env.split_reset(valid_test)
agent.eval()
list_eval_acc, list_eval_loss = [], []
counter = 0
to_print = []
while(True):
target_graph, previous_graph, action, admissible_graphs = env.get_batch()
with torch.no_grad():
loss, sp_ret, np_labels, admissible_graphs = agent.get_state_prediction_logits(previous_graph, action, target_graph, admissible_graphs)
loss = to_np(loss)
pred = np.argmax(sp_ret, -1) # batch
gt = np.argmax(np_labels, -1) # batch
correct = (pred == gt).astype("float32").tolist()
list_eval_acc += correct
list_eval_loss += [loss]
if verbose:
for i in range(len(previous_graph)):
to_print.append(str(counter) + " -------------------------------------------- acc: " + str(correct[i]))
trips = []
for t in previous_graph[i]:
trips.append(t[0] + "-" + t[2] + "-" + t[1])
to_print.append("PREV TRIPLETS: %s " % (" | ".join(trips)))
to_print.append("ACTION: %s " % (action[i]))
trips = []
for t in admissible_graphs[i][pred[i]]:
trips.append(t[0] + "-" + t[2] + "-" + t[1])
to_print.append("PRED TRIPLETS: %s " % (" | ".join(trips)))
trips = []
for t in target_graph[i]:
trips.append(t[0] + "-" + t[2] + "-" + t[1])
to_print.append("GT TRIPLETS: %s " % (" | ".join(trips)))
to_print.append("")
counter += 1
if env.batch_pointer == 0:
break
with open(agent.experiment_tag + "_output.txt", "w") as f:
f.write("\n".join(to_print))
print("Eval Loss: {:2.3f}, Eval accuracy: {:2.3f}".format(np.mean(list_eval_loss), np.mean(list_eval_acc)))
return np.mean(list_eval_loss), np.mean(list_eval_acc)
def evaluate_deep_graph_infomax(env, agent, valid_test="valid", verbose=False):
env.split_reset(valid_test)
agent.eval()
list_eval_acc, list_eval_loss = [], []
# counter = 0
# to_print = []
while(True):
triplets = env.get_batch()
with torch.no_grad():
loss, labels, dgi_discriminator_logits, batch_nonzero_idx = agent.get_deep_graph_infomax_logits(triplets)
# sigmoid
dgi_discriminator_logits = 1.0 / (1.0 + np.exp(-dgi_discriminator_logits))
for i in range(len(triplets)):
gt = labels[i] # num_node*2
pred_idx = (dgi_discriminator_logits[i] >= 0.5).astype("float32") # num_node*2
nonzeros = np.array(batch_nonzero_idx[i].tolist() + (batch_nonzero_idx[i] + len(agent.node_vocab)).tolist())
gt = gt[nonzeros] # num_nonzero
pred_idx = pred_idx[nonzeros] # num_nonzero
correct = (pred_idx == gt).astype("float32").tolist()
list_eval_acc += correct
loss = to_np(loss)
list_eval_loss.append(loss)
if env.batch_pointer == 0:
break
return np.mean(list_eval_loss), np.mean(list_eval_acc)