-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_dataset_example_id.py
223 lines (176 loc) · 7.7 KB
/
create_dataset_example_id.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""
Create real robot dataset.
In this example, we create a dataset that consists of agentview images, eye-in-hand images, joint states, gripper states, and end effector states.
"""
import argparse
import os
from pathlib import Path
import cv2
import h5py
import numpy as np
# from rpl_vision_utils.utils import img_utils as ImgUtils
from deoxys_vision.utils import img_utils as ImgUtils
# python create_dataset_example.py --folder /home/franka_deoxys/data_franka/imgsd_demo
# load imgs from npy not folder.
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--interface-cfg", type=str, default="config/alice.yml")
parser.add_argument(
"--controller-cfg", type=str, default="config/osc-controller.yml"
)
parser.add_argument(
"--folder", type=Path, default="data_collection_example/example_data"
)
parser.add_argument("--img-h", type=int, default=224)
parser.add_argument("--img-w", type=int, default=224)
args = parser.parse_args()
return args
def main():
args = parse_args()
camera_ids = [0, 1]
folder = str(args.folder)
demo_file_name = f"{folder}/demo.hdf5"
demo_file = h5py.File(demo_file_name, "w")
os.makedirs(f"{folder}/data", exist_ok=True)
grp = demo_file.create_group("data")
# Initialize variables for saving data
image_color_data_list = {}
image_depth_data_list = {}
joint_states_list = []
ee_states_list = []
gripper_states_list = []
image_names_data = {}
grp.attrs["camera_ids"] = camera_ids
camera_name_conversion_dict = {0: "agentview_rgb", 1: "eye_in_hand_rgb"}
if args.img_w == 224:
fx_fy_dict = {0: {"fx": 0.35, "fy": 0.35}, 1: {"fx": 0.4, "fy": 0.6}}
elif args.img_w == 128:
fx_fy_dict = {0: {"fx": 0.2, "fy": 0.2}, 1: {"fx": 0.2, "fy": 0.3}}
elif args.img_w == 84:
fx_fy_dict = {0: {"fx": 0.13, "fy": 0.13}, 1: {"fx": 0.15, "fy": 0.225}}
for camera_id in camera_ids:
image_color_data_list[camera_id] = []
image_depth_data_list[camera_id] = []
num_demos = 0
total_len = 0
screenshots = {}
for (run_idx, path) in enumerate(Path(folder).glob("run*")):
print(run_idx)
screenshots[run_idx] = None
num_demos += 1
joint_states = []
ee_states = []
gripper_states = []
actions = []
action_data = np.load(f"{path}/testing_demo_action.npz", allow_pickle=True)[
"data"
]
ee_states_data = np.load(
f"{path}/testing_demo_ee_states.npz", allow_pickle=True
)["data"]
joint_states_data = np.load(
f"{path}/testing_demo_joint_states.npz", allow_pickle=True
)["data"]
gripper_states_data = np.load(
f"{path}/testing_demo_gripper_states.npz", allow_pickle=True
)["data"]
len_data = len(action_data)
if len_data == 0:
print(f"Data incorrect: {run_idx}")
continue
ep_grp = grp.create_group(f"demo_{run_idx}")
camera_data = {}
for camera_id in camera_ids:
camera_data[camera_id] = np.load(
f"{path}/testing_demo_camera_{camera_id}.npz", allow_pickle=True
)["data"]
assert len(ee_states_data) == len(
action_data
), f"ee state has : {len(ee_states_data)} data, but action has {len(action_data)}"
image_color_data = {}
image_depth_data = {}
image_color_names_data = {}
image_depth_names_data = {}
for camera_id in camera_ids:
image_color_data[camera_id] = []
image_depth_data[camera_id] = []
image_color_names_data[camera_id] = []
image_depth_names_data[camera_id] = []
img_folder = f"{folder}/data/ep_{run_idx}/"
os.makedirs(f"{img_folder}", exist_ok=True)
print("Length of data", len_data)
for i in range(len_data):
# Rename image data and save to new folder
# print(i, action_data[i], camera_data[0][i])
for camera_id in camera_ids:
image_name = f"{img_folder}/camera_{camera_id}_img_{i}"
if "color" in camera_data[camera_id][i]:
color_image_name = camera_data[camera_id][i]["color"]
camera_type = camera_data[camera_id][i]["camera_type"]
img = cv2.imread(color_image_name)
# resized_img = cv2.resize(img, (0, 0), fx=0.2,
# fy=0.2)
if i == 0 and camera_type == "k4a":
screenshots[run_idx] = img
try:
resized_img = ImgUtils.resize_img(
img,
camera_type=camera_type,
img_w=args.img_w,
img_h=args.img_h,
fx=fx_fy_dict[camera_id]["fx"],
fy=fx_fy_dict[camera_id]["fy"],
)
except:
import pdb
pdb.set_trace()
new_image_name = f"{image_name}_color.jpg"
# cv2.imwrite(new_image_name, cv2.cvtColor(resized_img, cv2.COLOR_BGR2RGB))
image_color_data[camera_id].append(resized_img)
# print(resized_img.shape)
# image_color_names_data[camera_id].append(new_image_name)
if "depth" in camera_data[camera_id][i] and False:
depth_image_name = camera_data[camera_id][i]["depth"]
img = cv2.imread(depth_image_name)
# resized_img = cv2.resize(img, (0, 0), fx=0.2, fy=0.2)
resized_img = ImgUtils.resize_img(
img,
camera_type=camera_type,
img_w=args.img_w,
img_h=args.img_h,
fx=fx_fy_dict[camera_id]["fx"],
fy=fx_fy_dict[camera_id]["fy"],
)
new_image_name = f"{image_name}_depth.jpg"
cv2.imwrite(new_image_name, resized_img)
image_depth_data[camera_id].append(resized_img)
image_depth_names_data[camera_id].append(new_image_name)
ee_states.append(ee_states_data[i])
joint_states.append(joint_states_data[i])
gripper_states.append([gripper_states_data[i]])
actions.append(action_data[i])
assert len(actions) == len(ee_states)
assert len(image_color_data[0]) == len(actions)
joint_states_list.append(np.stack(joint_states, axis=0))
ee_states_list.append(np.stack(ee_states, axis=0))
gripper_states_list.append(np.stack(gripper_states, axis=0))
obs_grp = ep_grp.create_group("obs")
for camera_id in camera_ids:
obs_grp.create_dataset(
camera_name_conversion_dict[camera_id],
data=np.stack(image_color_data[camera_id], axis=0),
)
obs_grp.create_dataset("joint_states", data=np.stack(joint_states))
obs_grp.create_dataset("ee_states", data=np.stack(ee_states))
obs_grp.create_dataset("gripper_states", data=np.stack(gripper_states))
ep_grp.create_dataset("actions", data=np.stack(actions))
ep_grp.attrs["num_samples"] = len_data
total_len += len(actions)
os.makedirs(f"{folder}/screenshots", exist_ok=True)
cv2.imwrite(f"{folder}/screenshots/{run_idx}.jpg", screenshots[run_idx])
grp.attrs["num_demos"] = num_demos
grp.attrs["total"] = total_len
print("Total length: ", total_len)
demo_file.close()
if __name__ == "__main__":
main()