-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_iid.py
359 lines (320 loc) · 15.7 KB
/
train_iid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import os
import argparse
import torch
import numpy as np
import random
import pandas as pd
from torch.optim import Adam
from torchvision import transforms
from diffusers import UNet2DModel, DDIMScheduler
from src.datasets.fashion_mnist import create_dataloader as create_fashion_mnist_dataloader
from src.datasets.mnist import create_dataloader as create_mnist_dataloader
from src.datasets.cifar10 import create_dataloader as create_cifar10_dataloader
from src.datasets.cifar100 import create_dataloader as create_cifar100_dataloader
from src.common.utils import get_configuration
from src.common.diffusion_utils import wrap_in_pipeline
from src.pipelines.pipeline_ddim import DDIMPipeline
from src.models.vae import MlpVAE, VAE_loss
from src.standard_training.losses.diffusion_losses import MSELoss, MinSNRLoss, SmoothL1Loss
from src.standard_training.trainers.diffusion_training import DiffusionTraining
from src.standard_training.trainers.diffusion_distillation import (
GaussianDistillation,
GaussianSymmetryDistillation,
PartialGenerationDistillation,
GenerationDistillation,
NoDistillation
)
from src.standard_training.trainers.generative_training import GenerativeTraining
from src.standard_training.evaluators.generative_evaluator import GenerativeModelEvaluator
from src.standard_training.trackers.wandb_tracker import WandbTracker
from src.standard_training.trackers.csv_tracker import CSVTracker
def __parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--image_size", type=int, default=32,
help="Size of images to use for training")
parser.add_argument("--dataset", type=str, default="cifar10",
help="Dataset to use for training (mnist, fashion_mnist, cifar10, cifar100)")
parser.add_argument("--model_config_path", type=str,
default="configs/model/ddim_medium_3ch.json",
help="Path to model configuration file")
parser.add_argument("--training_type", type=str, default="diffusion",
help="Type of training to use (evaluate, diffusion, generative)")
parser.add_argument("--distillation_type", type=str, default=None,
help="Type of distillation to use (gaussian, gaussian_symmetry, generation, partial_generation, no_distillation)")
parser.add_argument("--teacher_path", type=str, default="results_fuji/smasipca/iid_results/cifar10/diffusion/None/ddim_medium_3ch_mse/42/best_model", #"results_fuji/smasipca/iid_results/comparison/diffusion/None/ddim_medium_mse/42/last_model",
help="Path to teacher model (only for distillation)")
parser.add_argument("--criterion", type=str, default="mse",
help="Criterion to use for training (smooth_l1, mse, min_snr)")
parser.add_argument("--generation_steps", type=int, default=20,
help="Number of steps for diffusion (used in evaluation)")
parser.add_argument("--eta", type=float, default=0.0,
help="Eta for diffusion (used in evaluation)")
parser.add_argument("--teacher_generation_steps", type=int, default=2,
help="Number of steps for teacher diffusion (used in distillation)")
parser.add_argument("--teacher_eta", type=float, default=0.0,
help="Eta for teacher diffusion (used in distillation)")
parser.add_argument("--num_epochs", type=int, default=200,
help="Number of epochs (when not using distillation) or iterations (when using distillation) to train for")
parser.add_argument("--batch_size", type=int, default=128,
help="Batch size to use for training")
parser.add_argument("--eval_batch_size", type=int, default=128,
help="Batch size to use for evaluation")
parser.add_argument("--results_folder", type=str, default="/esat/fuji/smasipca/iid_results",
help="Folder to save results to")
parser.add_argument("--save_every", type=int, default=5,
help="Evaluate and save model every n epochs (normal) or n iterations (distillation)")
parser.add_argument("--use_wandb", action="store_true", default=False,
help="Whether to use wandb for logging")
parser.add_argument("--seed", type=int, default=None,
help="Seed to use for training. If None, train with 5 different seeds and report the best one")
return parser.parse_args()
def run_experiment(args, device, model_config, tracker, results_folder):
if args.dataset == "mnist":
preprocess = transforms.Compose(
[
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
train_dataloader, test_dataloader = create_mnist_dataloader(
args.batch_size, preprocess)
elif args.dataset == "fashion_mnist":
preprocess = transforms.Compose(
[
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
train_dataloader, test_dataloader = create_fashion_mnist_dataloader(
args.batch_size, preprocess)
elif args.dataset == "cifar10":
train_transform = transforms.Compose(
[
transforms.Resize((args.image_size, args.image_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
# transforms.Normalize(
# (0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)
# ),
transforms.Normalize(
(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)
),
]
)
test_transform = transforms.Compose(
[
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor(),
# transforms.Normalize(
# (0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)
# ),
transforms.Normalize(
(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)
),
]
)
train_dataloader, test_dataloader = create_cifar10_dataloader(
args.batch_size,
train_transform,
test_transform
)
elif args.dataset == "cifar100":
preprocess = transforms.Compose(
[
transforms.Resize((args.image_size, args.image_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
(0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)
),
]
)
train_dataloader, test_dataloader = create_cifar100_dataloader(
args.batch_size, preprocess)
else:
raise NotImplementedError
evaluator = GenerativeModelEvaluator(
device=device, save_images=100, save_path=results_folder)
if args.training_type == "diffusion":
model = UNet2DModel(
sample_size=model_config.model.input_size,
in_channels=model_config.model.in_channels,
out_channels=model_config.model.out_channels,
layers_per_block=model_config.model.layers_per_block,
block_out_channels=model_config.model.block_out_channels,
norm_num_groups=model_config.model.norm_num_groups,
down_block_types=model_config.model.down_block_types,
up_block_types=model_config.model.up_block_types,
norm_eps=model_config.model.norm_eps,
freq_shift=model_config.model.freq_shift,
attention_head_dim=model_config.model.attention_head_dim,
flip_sin_to_cos=model_config.model.flip_sin_to_cos,
)
noise_scheduler = DDIMScheduler(
num_train_timesteps=model_config.scheduler.train_timesteps)
wrap_in_pipeline(model, noise_scheduler,
DDIMPipeline, args.generation_steps, args.eta)
model = model.to(device)
print("Number of parameters:", sum(p.numel()
for p in model.parameters() if p.requires_grad))
optimizer = Adam(model.parameters(), lr=model_config.optimizer.lr)
# scheduler = OneCycleLR(optimizer, args.lr, total_steps=args.epochs*len(train_dataloader), pct_start=0.25, anneal_strategy='cos')
if args.criterion == "mse":
criterion = MSELoss(noise_scheduler)
elif args.criterion == "min_snr":
criterion = MinSNRLoss(noise_scheduler)
elif args.criterion == "smooth_l1":
criterion = SmoothL1Loss(noise_scheduler)
else:
raise NotImplementedError
if args.distillation_type is None:
trainer = DiffusionTraining(
model=model,
scheduler=noise_scheduler,
optimizer=optimizer,
criterion=criterion,
train_mb_size=args.batch_size,
train_epochs=args.num_epochs,
eval_mb_size=args.eval_batch_size,
device=device,
train_timesteps=model_config.scheduler.train_timesteps,
evaluator=evaluator,
tracker=tracker,
save_path=results_folder,
)
trainer.train(train_dataloader, test_dataloader, save_every=args.save_every)
else:
assert args.teacher_path is not None
teacher_pipeline = DDIMPipeline.from_pretrained(args.teacher_path)
teacher_pipeline.set_progress_bar_config(disable=True)
teacher = teacher_pipeline.unet.to(device)
wrap_in_pipeline(teacher, noise_scheduler, DDIMPipeline,
args.teacher_generation_steps, args.teacher_eta, def_output_type="torch_raw")
if args.distillation_type == "gaussian":
trainer_class = GaussianDistillation
elif args.distillation_type == "gaussian_symmetry":
trainer_class = GaussianSymmetryDistillation
elif args.distillation_type == "generation":
trainer_class = GenerationDistillation
elif args.distillation_type == "partial_generation":
trainer_class = PartialGenerationDistillation
elif args.distillation_type == "no_distillation":
trainer_class = NoDistillation
else:
raise NotImplementedError
trainer = trainer_class(
model=model,
scheduler=noise_scheduler,
optimizer=optimizer,
criterion=criterion,
train_mb_size=args.batch_size,
train_iterations=args.num_epochs,
eval_mb_size=args.eval_batch_size,
device=device,
train_timesteps=model_config.scheduler.train_timesteps,
evaluator=evaluator,
tracker=tracker,
)
trainer.train(teacher, test_dataloader,
save_path=results_folder, save_every=args.save_every)
elif args.training_type == "generative":
print("WARNING: This training type is not fully tested and is not compatible with the new code.")
model = MlpVAE(
(model_config.model.channels, model_config.model.input_size,
model_config.model.input_size),
encoder_dims=model_config.model.encoder_dims,
decoder_dims=model_config.model.decoder_dims,
latent_dim=model_config.model.latent_dim,
n_classes=model_config.model.n_classes,
device=device
)
model = model.to(device)
optimizer = torch.optim.Adam(
model.parameters(),
lr=model_config.optimizer.lr,
betas=(0.9, 0.999),
)
trainer = GenerativeTraining(
model=model,
optimizer=optimizer,
criterion=VAE_loss,
train_mb_size=args.batch_size,
train_epochs=args.num_epochs,
eval_mb_size=args.eval_batch_size,
device=device,
evaluator=evaluator
)
trainer.train(train_dataloader, test_dataloader,
save_path=results_folder)
elif args.training_type == "evaluate":
model_pipeline = DDIMPipeline.from_pretrained(args.teacher_path)
model_pipeline.set_progress_bar_config(disable=True)
model = model_pipeline.unet.to(device)
wrap_in_pipeline(model, model_pipeline.scheduler, DDIMPipeline,
args.teacher_generation_steps, args.eta)
evaluator.evaluate(model, test_dataloader, gensteps=args.generation_steps, compute_auc=False, fid_images=0)
else:
raise NotImplementedError
def main(args):
model_name = args.model_config_path.split("/")[-1].split(".")[0]
run_name = f"{args.dataset}/{args.training_type}/{args.distillation_type}/{model_name}_{args.criterion}"
if args.distillation_type is not None:
run_name += f"_teacher_steps_{args.teacher_generation_steps}_eta_{args.teacher_eta}"
results_folder = os.path.join(args.results_folder, run_name)
if args.seed is not None:
results_folder = os.path.join(results_folder, str(args.seed))
os.makedirs(results_folder, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
model_config = get_configuration(args.model_config_path)
all_configs = {
"model_config": model_config,
"args": vars(args)
}
if args.use_wandb and args.training_type != "evaluate":
tracker = WandbTracker(
configs=all_configs,
experiment_name=run_name.split("/")[-1],
project_name=f"master-thesis-{args.dataset}-{args.training_type}-{args.distillation_type}",
tags=[args.dataset, args.training_type, str(args.distillation_type), model_name, args.criterion],
)
else:
tracker = None
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
run_experiment(args, device, model_config, tracker, results_folder)
else:
assert not args.use_wandb, "Cannot use wandb with multiple seeds"
for seed in [42, 69, 420, 666, 1714]:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
results_seed_folder = os.path.join(results_folder, str(seed))
os.makedirs(results_seed_folder, exist_ok=True)
tracker = CSVTracker(all_configs, results_seed_folder)
run_experiment(args, device, model_config, tracker, results_seed_folder)
# Check the best model for each seed and print the best one
best_auc = torch.inf
best_epoch = None
best_seed = None
for seed in [42, 69, 420, 666, 1714]:
results_seed_folder = os.path.join(results_folder, str(seed))
csv_file = open(os.path.join(results_seed_folder, "test.csv"), "r")
df = pd.read_csv(csv_file)
# Get the row with the best AUC
row = df.loc[df["metric"] == "auc"].sort_values(by=["value"]).iloc[0]
auc = row["value"]
epoch = row["epoch"]
if auc < best_auc:
best_auc = auc
best_epoch = epoch
best_seed = seed
print(f"Best seed: {best_seed} at epoch {best_epoch} with AUC {best_auc}")
if __name__ == "__main__":
args = __parse_args()
main(args)