-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
124 lines (104 loc) · 4.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# python imports
import os
import glob
import warnings
# external imports
import torch
import numpy as np
import SimpleITK as sitk
from torch.optim import Adam
import torch.utils.data as Data
# internal imports
from Model import losses
from Model.config import args
from Model.datagenerators import Dataset
from Model.model import U_Network, SpatialTransformer
def count_parameters(model):
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
return params
def make_dirs():
if not os.path.exists(args.model_dir):
os.makedirs(args.model_dir)
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
if not os.path.exists(args.result_dir):
os.makedirs(args.result_dir)
def save_image(img, ref_img, name):
img = sitk.GetImageFromArray(img[0, 0, ...].cpu().detach().numpy())
img.SetOrigin(ref_img.GetOrigin())
img.SetDirection(ref_img.GetDirection())
img.SetSpacing(ref_img.GetSpacing())
sitk.WriteImage(img, os.path.join(args.result_dir, name))
def train():
# 创建需要的文件夹并指定gpu
make_dirs()
#device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() else 'cpu')
device = torch.device('cpu')
# 日志文件
log_name = str(args.n_iter) + "_" + str(args.lr) + "_" + str(args.alpha)
print("log_name: ", log_name)
f = open(os.path.join(args.log_dir, log_name + ".txt"), "w")
# 读入fixed图像
f_img = sitk.ReadImage(args.atlas_file)
input_fixed = sitk.GetArrayFromImage(f_img)[np.newaxis, np.newaxis, ...]
vol_size = input_fixed.shape[2:]
# [B, C, D, W, H]
input_fixed = np.repeat(input_fixed, args.batch_size, axis=0)
input_fixed = torch.from_numpy(input_fixed).to(device).float()
# 创建配准网络(UNet)和STN
nf_enc = [16, 32, 32, 32]
if args.model == "vm1":
nf_dec = [32, 32, 32, 32, 8, 8]
else:
nf_dec = [32, 32, 32, 32, 32, 16, 16]
UNet = U_Network(len(vol_size), nf_enc, nf_dec).to(device)
STN = SpatialTransformer(vol_size).to(device)
UNet.train()
STN.train()
# 模型参数个数
print("UNet: ", count_parameters(UNet))
print("STN: ", count_parameters(STN))
# Set optimizer and losses
opt = Adam(UNet.parameters(), lr=args.lr)
sim_loss_fn = losses.ncc_loss if args.sim_loss == "ncc" else losses.mse_loss
grad_loss_fn = losses.gradient_loss
# Get all the names of the training data
train_files = glob.glob(os.path.join(args.train_dir, '*.nii.gz'))
DS = Dataset(files=train_files)
print("Number of training images: ", len(DS))
DL = Data.DataLoader(DS, batch_size=args.batch_size, shuffle=True, num_workers=0, drop_last=True)
# Training loop.
for i in range(1, args.n_iter + 1):
# Generate the moving images and convert them to tensors.
input_moving = iter(DL).next()
# [B, C, D, W, H]
input_moving = input_moving.to(device).float()
# Run the data through the model to produce warp and flow field
flow_m2f = UNet(input_moving, input_fixed)
m2f = STN(input_moving, flow_m2f)
# Calculate loss
sim_loss = sim_loss_fn(m2f, input_fixed)
grad_loss = grad_loss_fn(flow_m2f)
loss = sim_loss + args.alpha * grad_loss
print("i: %d loss: %f sim: %f grad: %f" % (i, loss.item(), sim_loss.item(), grad_loss.item()), flush=True)
print("%d, %f, %f, %f" % (i, loss.item(), sim_loss.item(), grad_loss.item()), file=f)
# Backwards and optimize
opt.zero_grad()
loss.backward()
opt.step()
if i % args.n_save_iter == 0:
# Save model checkpoint
save_file_name = os.path.join(args.model_dir, '%d.pth' % i)
torch.save(UNet.state_dict(), save_file_name)
# Save images
m_name = str(i) + "_m.nii.gz"
m2f_name = str(i) + "_m2f.nii.gz"
save_image(input_moving, f_img, m_name)
save_image(m2f, f_img, m2f_name)
print("warped images have saved.")
f.close()
if __name__ == "__main__":
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
train()