forked from ahmadianlab/gg3_nda
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtask_4_1_2.py
70 lines (56 loc) · 2.55 KB
/
task_4_1_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# import
from inference import *
from HMM_models import *
from HMM_inference import *
import numpy as np
from scipy.stats import truncnorm
# Truncated Gaussian prior
beta_center = beta_space[0]
sigma_center = (sigma_space[0] + sigma_space[-1]) / 2
m_center = m_space[0]
r_center = (r_space[0]+r_space[-1]) / 2
fraction = 0.2
beta_std = fraction * (beta_space[-1] - beta_space[0])
sigma_std = fraction * (sigma_space[-1] - sigma_space[0])
m_std = fraction * (m_space[-1] - m_space[0])
r_std = fraction * (r_space[-1] - r_space[0])
def truncated_gaussian_prior(mean, std_dev, lower, upper, size=1):
a, b = (lower - mean) / std_dev, (upper - mean) / std_dev
return truncnorm(a, b, loc=mean, scale=std_dev).rvs(size)
beta_prior = truncated_gaussian_prior(beta_center, beta_std, beta_space[0], beta_space[-1], size = len(beta_space))
sigma_prior = truncated_gaussian_prior(sigma_center, sigma_std, sigma_space[0], sigma_space[-1], size = len(sigma_space))
m_prior = truncated_gaussian_prior(m_center, m_std, m_space[0], m_space[-1], size = len(m_space))
r_prior = truncated_gaussian_prior(r_center, r_std, r_space[0], r_space[-1], size = len(r_space))
for p in [beta_prior, sigma_prior, m_prior, r_prior]:
p /= np.sum(p)
ramp_priori_gauss = np.outer(beta_prior, sigma_prior)
step_priori_gauss = np.outer(m_prior, r_prior)
ramp_priori_uniform = np.ones([len(beta_space), len(sigma_space)]) / (len(beta_space)*len(sigma_space))
step_priori_uniform = np.ones([len(m_space), len(r_space)]) / (len(m_space)*len(r_space))
gamma = 2 #gamma = 1 to 5
iter = 100
N = 25
result_step = np.empty([])
error_step = 0
for i in range(iter):
m,r = sample_from_priori(step_priori_gauss, model = 'step')
shmm = HMM_Step(m, r, x0, Rh, T, isi_gamma_shape=gamma)
shmm_datas = generate_N_trials(N, shmm)
bayes = compute_bayes_factor(shmm_datas, ramp_priori_uniform, step_priori_uniform)
result_step = np.append(result_step, bayes)
if bayes < 0:
error_step += 1
#print('Step decision results', result_step)
print('Step decision accuracy', error_step / iter)
result_ramp = np.empty([])
error_ramp = 0
for i in range(iter):
beta, sigma = sample_from_priori(ramp_priori_gauss, model = 'ramp')
rhmm = HMM_Ramp(beta, sigma, K, x0, Rh, T, isi_gamma_shape=gamma)
rhmm_datas = generate_N_trials(N, rhmm)
bayes = compute_bayes_factor(rhmm_datas, ramp_priori_uniform, step_priori_uniform)
result_ramp = np.append(result_ramp, bayes)
if bayes > 0:
error_ramp += 1
#print('Ramp decision results', result_ramp)
print('Ramp decision accuracy', error_ramp / iter)