-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathensamble.py
executable file
·223 lines (180 loc) · 7.31 KB
/
ensamble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import csv
import copy
import numpy as np
from tqdm import tqdm
import torch
import torch.optim as optim
import torch.functional as F
from torch_geometric.data import DataLoader
from utils import metrics_pharma
from utils.args import ArgsInit
from data.dataset import load_dataset
from model.model import DeeperGCN
from model.model_concatenation import PLANet
@torch.no_grad()
def eval(model, device, loader, num_classes, args):
model.eval()
y_true = []
y_pred = []
correct = 0
print("------Copying model 1---------")
prop_predictor1 = copy.deepcopy(model)
print("------Copying model 2---------")
prop_predictor2 = copy.deepcopy(model)
print("------Copying model 3---------")
prop_predictor3 = copy.deepcopy(model)
print("------Copying model 4---------")
prop_predictor4 = copy.deepcopy(model)
# breakpoint()
test_model_path = os.path.join(
args.save,'BINARY_'+args.target
)
test_model_path1 = test_model_path + "/Fold1/model_ckpt/Best_Model.pth"
test_model_path2 = test_model_path + "/Fold2/model_ckpt/Best_Model.pth"
test_model_path3 = test_model_path + "/Fold3/model_ckpt/Best_Model.pth"
test_model_path4 = test_model_path + "/Fold4/model_ckpt/Best_Model.pth"
# LOAD MODELS
print("------- Loading weights----------")
prop_predictor1.load_state_dict(torch.load(test_model_path1)["model_state_dict"])
prop_predictor1.to(device)
prop_predictor2.load_state_dict(torch.load(test_model_path2)["model_state_dict"])
prop_predictor2.to(device)
prop_predictor3.load_state_dict(torch.load(test_model_path3)["model_state_dict"])
prop_predictor3.to(device)
prop_predictor4.load_state_dict(torch.load(test_model_path4)["model_state_dict"])
prop_predictor4.to(device)
# METHOD.EVAL
prop_predictor1.eval()
prop_predictor2.eval()
prop_predictor3.eval()
prop_predictor4.eval()
for step, batch in enumerate(tqdm(loader, desc="Iteration")):
if args.use_prot:
batch_mol = batch[0].to(device)
batch_prot = batch[1].to(device)
else:
batch_mol = batch.to(device)
if args.feature == "full":
pass
elif args.feature == "simple":
# only retain the top two node/edge features
num_features = args.num_features
batch_mol.x = batch_mol.x[:, :num_features]
batch_mol.edge_attr = batch_mol.edge_attr[:, :num_features]
if batch_mol.x.shape[0] == 1:
pass
else:
with torch.set_grad_enabled(False):
if args.use_prot:
pred1 = F.softmax(prop_predictor1(batch_mol, batch_prot), dim=1)
pred2 = F.softmax(prop_predictor2(batch_mol, batch_prot), dim=1)
pred3 = F.softmax(prop_predictor3(batch_mol, batch_prot), dim=1)
pred4 = F.softmax(prop_predictor4(batch_mol, batch_prot), dim=1)
else:
pred1 = F.softmax(prop_predictor1(batch_mol), dim=1)
pred2 = F.softmax(prop_predictor2(batch_mol), dim=1)
pred3 = F.softmax(prop_predictor3(batch_mol), dim=1)
pred4 = F.softmax(prop_predictor4(batch_mol), dim=1)
pred = (pred1 + pred2 + pred3 + pred4) / 4
y_true.append(batch_mol.y.view(batch_mol.y.shape).detach().cpu())
y_pred.append(pred.detach().cpu())
_, prediction_class = torch.max(pred, 1)
correct += torch.sum(prediction_class == batch_mol.y)
y_true = torch.cat(y_true, dim=0).numpy()
y_pred = torch.cat(y_pred, dim=0).numpy()
if args.binary:
# nap, f = metrics_pharma.norm_ap_binary(y_pred, y_true, num_classes)
auc = metrics_pharma.plotbinauc(y_pred, y_true)
nap, f = metrics_pharma.pltmap_bin(y_pred, y_true)
else:
nap, f = metrics_pharma.norm_ap(y_pred, y_true, num_classes)
auc = metrics_pharma.pltauc(y_pred, y_true, num_classes)
acc = correct / len(loader.dataset)
return acc, auc, f, nap
def main(target):
args = ArgsInit().args
if args.target is None:
args.target = target
if args.use_gpu:
device = (
torch.device("cuda:" + str(args.device))
if torch.cuda.is_available()
else torch.device("cpu")
)
else:
device = torch.device("cpu")
if args.binary:
args.nclasses = 2
# Numpy and torch seeds
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if device.type == "cuda":
torch.cuda.manual_seed(args.seed)
print(args)
( _,_,test_dataset,_,_,_,) = load_dataset(
cross_val=args.cross_val,
binary_task=args.binary,
target=args.target,
use_prot=args.use_prot,
args=args,
test=True,
)
test_loader = DataLoader(
test_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
)
if args.use_prot:
model = PLANet(args).to(device)
else:
model = DeeperGCN(args).to(device)
acc, auc, f, nap = eval(model, device, test_loader, args.nclasses, args)
save_items = {"Target": [], "NAP": [], "AUC": [], "ACC": [], "F_Med": []}
save_items["Target"] = args.target
save_items["NAP"] = nap
save_items["AUC"] = auc
save_items["ACC"] = acc.item()
save_items["F_Med"] = f
fieldnames = list(save_items.keys())
csv_file = os.path.join(
args.save,'Performance.csv'
)
if not os.path.exists(csv_file):
create_header = True
else:
create_header = False
with open(csv_file, "a+") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
if create_header:
writer.writeheader()
writer.writerow(save_items)
print({"ACC": acc, "AUC": auc, "F-medida": f, "NAP": nap})
return nap
if __name__ == "__main__":
args = ArgsInit().args
if args.target is None:
targets = ['aa2ar', 'abl1', 'ace', 'aces', 'ada', 'ada17', 'adrb1', 'adrb2',
'akt1', 'akt2', 'aldr', 'ampc', 'andr', 'aofb', 'bace1', 'braf',
'cah2', 'casp3', 'cdk2', 'comt', 'cp2c9', 'cp3a4', 'csf1r',
'cxcr4', 'def', 'dhi1', 'dpp4', 'drd3', 'dyr', 'egfr', 'esr1',
'esr2', 'fa10', 'fa7', 'fabp4', 'fak1', 'fgfr1', 'fkb1a', 'fnta',
'fpps', 'gcr', 'glcm', 'gria2', 'grik1', 'hdac2', 'hdac8',
'hivint', 'hivpr', 'hivrt', 'hmdh', 'hs90a', 'hxk4', 'igf1r',
'inha', 'ital', 'jak2', 'kif11', 'kit', 'kith', 'kpcb', 'lck',
'lkha4', 'mapk2', 'mcr', 'met', 'mk01', 'mk10', 'mk14', 'mmp13',
'mp2k1', 'nos1', 'nram', 'pa2ga', 'parp1', 'pde5a', 'pgh1', 'pgh2',
'plk1', 'pnph', 'ppara', 'ppard', 'pparg', 'prgr', 'ptn1', 'pur2',
'pygm', 'pyrd', 'reni', 'rock1', 'rxra', 'sahh', 'src', 'tgfr1',
'thb', 'thrb', 'try1', 'tryb1', 'tysy', 'urok', 'vgfr2', 'wee1',
'xiap']
results = {'Target': [], 'Mean_Test': []}
for target in targets:
nap_result = main(target)
results['Target'].append(target)
results['Mean_Test'].append(nap_result)
torch.save(results,os.path.join(args.save,'Overall_test_results.pth'))
print('Mean Test: {}'.format(np.mean(results['Mean_Test'])))
else:
main()