-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfocal_loss.py
130 lines (107 loc) · 4.32 KB
/
focal_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from typing import Optional, Sequence
import torch
from torch import Tensor
from torch import nn
from torch.nn import functional as F
class FocalLoss(nn.Module):
""" Focal Loss, as described in https://arxiv.org/abs/1708.02002.
It is essentially an enhancement to cross entropy loss and is
useful for classification tasks when there is a large class imbalance.
x is expected to contain raw, unnormalized scores for each class.
y is expected to contain class labels.
Shape:
- x: (batch_size, C) or (batch_size, C, d1, d2, ..., dK), K > 0.
- y: (batch_size,) or (batch_size, d1, d2, ..., dK), K > 0.
"""
def __init__(self,
alpha: Optional[Tensor] = None,
gamma: float = 0.,
reduction: str = 'mean',
ignore_index: int = -100):
"""Constructor.
Args:
alpha (Tensor, optional): Weights for each class. Defaults to None.
gamma (float, optional): A constant, as described in the paper.
Defaults to 0.
reduction (str, optional): 'mean', 'sum' or 'none'.
Defaults to 'mean'.
ignore_index (int, optional): class label to ignore.
Defaults to -100.
"""
if reduction not in ('mean', 'sum', 'none'):
raise ValueError(
'Reduction must be one of: "mean", "sum", "none".')
super().__init__()
self.alpha = alpha
self.gamma = gamma
self.ignore_index = ignore_index
self.reduction = reduction
self.nll_loss = nn.NLLLoss(
weight=alpha, reduction='none', ignore_index=ignore_index)
def __repr__(self):
arg_keys = ['alpha', 'gamma', 'ignore_index', 'reduction']
arg_vals = [self.__dict__[k] for k in arg_keys]
arg_strs = [f'{k}={v!r}' for k, v in zip(arg_keys, arg_vals)]
arg_str = ', '.join(arg_strs)
return f'{type(self).__name__}({arg_str})'
def forward(self, x: Tensor, y: Tensor) -> Tensor:
if x.ndim > 2:
# (N, C, d1, d2, ..., dK) --> (N * d1 * ... * dK, C)
c = x.shape[1]
x = x.permute(0, *range(2, x.ndim), 1).reshape(-1, c)
# (N, d1, d2, ..., dK) --> (N * d1 * ... * dK,)
y = y.view(-1)
unignored_mask = y != self.ignore_index
y = y[unignored_mask]
if len(y) == 0:
return torch.tensor(0.)
x = x[unignored_mask]
# compute weighted cross entropy term: -alpha * log(pt)
# (alpha is already part of self.nll_loss)
log_p = F.log_softmax(x, dim=-1)
ce = self.nll_loss(log_p, y)
# get true class column from each row
all_rows = torch.arange(len(x))
log_pt = log_p[all_rows, y]
# compute focal term: (1 - pt)^gamma
pt = log_pt.exp()
focal_term = (1 - pt)**self.gamma
# the full loss: -alpha * ((1 - pt)^gamma) * log(pt)
loss = focal_term * ce
if self.reduction == 'mean':
loss = loss.mean()
elif self.reduction == 'sum':
loss = loss.sum()
return loss
def focal_loss(alpha: Optional[Sequence] = None,
gamma: float = 0.,
reduction: str = 'mean',
ignore_index: int = -100,
device='cpu',
dtype=torch.float32) -> FocalLoss:
"""Factory function for FocalLoss.
Args:
alpha (Sequence, optional): Weights for each class. Will be converted
to a Tensor if not None. Defaults to None.
gamma (float, optional): A constant, as described in the paper.
Defaults to 0.
reduction (str, optional): 'mean', 'sum' or 'none'.
Defaults to 'mean'.
ignore_index (int, optional): class label to ignore.
Defaults to -100.
device (str, optional): Device to move alpha to. Defaults to 'cpu'.
dtype (torch.dtype, optional): dtype to cast alpha to.
Defaults to torch.float32.
Returns:
A FocalLoss object
"""
if alpha is not None:
if not isinstance(alpha, Tensor):
alpha = torch.tensor(alpha)
alpha = alpha.to(device=device, dtype=dtype)
fl = FocalLoss(
alpha=alpha,
gamma=gamma,
reduction=reduction,
ignore_index=ignore_index)
return fl