Skip to content

Latest commit

 

History

History
138 lines (102 loc) · 4.43 KB

README.md

File metadata and controls

138 lines (102 loc) · 4.43 KB

Efficient Soft Robotic Models for (Real-Time) Control Applications -- MATLAB package

The dynamic model for any N-link soft manpulator is given here by the following Lagrangian form:

where M(.) is the generalized inertia matrix, C(.,.) the Coriolis matrix, G(.) the gravitional forces, N(.,.) a vector of hyper-elastic and visco-elastic contributions, and q(t) the joint variable vector with a particular structure:

The assembly and implicit numerical simulation scheme is build into a MATLAB class called: Model.m. An example for generating a 8-link soft robot manipulator undergoing free oscillations is given below:

Natural oscillations of 8-link soft manipulator

%% generate model class
mdl = Model(8);

%% settings
mdl = mdl.set('Tsim',10);
mdl = mdl.setElements(50);
mdl = mdl.setFrequency(50);
mdl = mdl.setLength(0.03);

%% simulate with non-zero initial conditions
mdl.q0(2:3:end) = 5;
mdl = mdl.simulate;

%% show simulation
figure(102);

for ii = 1:fps(mdl.t,30):length(mdl.t)
    figure(102); cla;
    
    mdl.show(mdl.q(ii,:),col(1));
    axis equal; axis(0.25*[-0.4 1.25 -1 1 -1 1]);
    view(0,0); grid on; box on; 
    drawnow(); 
end

Closed-loop control of 4-link soft manipulator

%% generate model class
mdl = Model(4);

%% settings
mdl = mdl.set('Phi0',rotx(pi),'Tsim',15);
mdl = mdl.setElements(60);
mdl = mdl.setFrequency(60);
mdl = mdl.setLength(0.065);

%% set model-based controller (computed torque control, see below)
qd  = [0;20;10;0;-20;0;0;0;30;0;-40;0]; 
mdl = mdl.setControl( @(mdl) Controller(mdl,qd) );

%% simulate with zero initial conditions
mdl = mdl.simulate;

%% show simulation
figure(102);
Qd = [0;20;10;0;-20;0;0;0;30;0;-40;0].';

for ii = 1:fps(mdl.t,12):length(mdl.t)
    figure(102); cla;
    mdl.show(mdl.q(ii,:),col(1));
    mdl.show(Qd,col(2));
    
    groundplane(0.02);
    axis equal; axis(0.2*[-0.75 0.75 -0.75 0.75 -1.5 0.1]);
    view(30,30); grid on; box on;  drawnow(); 
end

%% model-based controller
function tau = Controller(mdl,qd)
  Kp = 1e-4*eye(12);
  Kd = 5e-5*eye(12);
  tau = mdl.G + mdl.K*(mdl.q) - Kp*(mdl.q - qd) - Kd*(mdl.dq);
end

Comparison between hyper-elastic vs. linear materials

The nonlinear stifnesses (for both bending and elongation) are given by:

%% set number of links
mdl = Model(8);

%% settings
mdl = mdl.setElements(64);
mdl = mdl.setFrequency(60);
mdl = mdl.setLength(0.04);

%% simulate with hyper-elastic material
mdl     = mdl.set('ke',[223.435, 174.051, -45.5521]);
mdl     = mdl.set('kb',[0.42292, 0.39552, -0.21293]);
mdl.tau = @(mdl) Controller(mdl);
mdl     = mdl.simulate;
Q1      = mdl.q;

%% simulate with hyper-elastic material
mdl     = mdl.set('ke',[50,0,0]);   % optimized to match hyper-elastic - w = 2pi, A = 0.02;
mdl     = mdl.set('kb',[0.09,0,0]); % optimized to match hyper-elastic - w = 2pi, A = 0.02;
mdl.tau = @(mdl) Controller(mdl);
mdl     = mdl.simulate;
Q2      = mdl.q;

%% animate soft robot
f = figure(102);

for ii = 1:fps(mdl.t,30):length(mdl.t)
    
    figure(102); cla;
    
    groundplane(0.05);
    mdl.show(Q1(ii,:),col(1));
    mdl.show(Q2(ii,:),col(2));
    
    axis equal; axis(0.4*[-1 1 -1 1 -0.75 1.1]);
    view(0,0); drawnow;
    box on; grid on; set(gca,'linewidth',2.5);

end

function tau = Controller(mdl)
v = [0;sin(mdl.t);0];
tau = 0.02*[v;zeros((mdl.Nlink-1)*3,1)];
end