-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtraining_nli.py
98 lines (75 loc) · 3.51 KB
/
training_nli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from torch.utils.data import DataLoader
import math
from sentence_transformers import models, losses
from sentence_transformers import SentencesDataset, LoggingHandler, SentenceTransformer, util, InputExample
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
import logging
from datetime import datetime
import sys
import os
import gzip
import csv
model_name = "skt_kobert_model_"
train_batch_size = 16
model_save_path = 'output/training_nli_'
word_embedding_model = models.Transformer(model_name, isKor=True)
# Apply mean pooling to get one fixed sized sentence vector
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
pooling_mode_mean_tokens=True,
pooling_mode_cls_token=False,
pooling_mode_max_tokens=False)
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
logging.info("Read AllNLI train dataset")
label2int = {"contradiction": 0, "entailment": 1, "neutral": 2}
train_samples = []
with open('./KorNLUDatasets/KorNLI/snli_1.0_train.ko.tsv', "rt", encoding="utf-8") as fIn:
lines = fIn.readlines()
for line in lines:
s1, s2, label = line.split('\t')
label = label2int[label.strip()]
train_samples.append(InputExample(texts=[s1, s2], label=label))
train_dataset = SentencesDataset(train_samples, model=model)
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=train_batch_size)
train_loss = losses.SoftmaxLoss(model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=len(label2int))
#Read STSbenchmark dataset and use it as development set
logging.info("Read STSbenchmark dev dataset")
dev_samples = []
with open('./KorNLUDatasets/KorSTS/tune_dev.tsv', 'rt', encoding='utf-8') as fIn:
lines = fIn.readlines()
for line in lines:
s1, s2, score = line.split('\t')
score = score.strip()
score = float(score) / 5.0
dev_samples.append(InputExample(texts= [s1,s2], label=score))
dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, batch_size=train_batch_size, name='sts-dev')
num_epochs = 1
warmup_steps = math.ceil(len(train_dataset) * num_epochs / train_batch_size * 0.1) #10% of train data for warm-up
logging.info("Warmup-steps: {}".format(warmup_steps))
# Train the model
model.fit(train_objectives=[(train_dataloader, train_loss)],
evaluator=dev_evaluator,
epochs=num_epochs,
evaluation_steps=1000,
warmup_steps=warmup_steps,
output_path=model_save_path
)
##############################################################################
#
# Load the stored model and evaluate its performance on STS benchmark dataset
#
##############################################################################
test_samples = []
with open('./KorNLUDatasets/KorSTS/tune_test.tsv', 'rt', encoding='utf-8') as fIn:
lines = fIn.readlines()
for line in lines:
s1, s2, score = line.split('\t')
score = score.strip()
score = float(score) / 5.0
test_samples.append(InputExample(texts=[s1,s2], label=score))
print("\n\n\n")
print("======================TEST===================")
print("\n\n\n")
model = SentenceTransformer(model_save_path)
print(f"model save path > {model_save_path}")
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, batch_size=train_batch_size, name='sts-test')
test_evaluator(model, output_path=model_save_path)