-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
114 lines (93 loc) · 4.45 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from time import perf_counter as t
import torch
import torch.nn as nn
import random
from Model.CoBFormer import *
from Train.train_test import *
# max_val = -10000
def co_early_stop_train(epochs, patience, model, data, label, patch, split_index, optimizer, show_details,
postfix, save_path=None):
best_epoch1 = 0
best_epoch2 = 0
acc_val1_max = 0.
acc_val2_max = 0.
logger = []
max_val = -10000
for epoch in range(1, epochs + 1):
micro_val1, micro_test1, macro_val1, macro_test1, micro_val2, micro_test2, macro_val2, macro_test2 = co_train(
model, data, label, patch, split_index, optimizer)
logger.append(
[micro_val1, micro_test1, macro_val1, macro_test1, micro_val2, micro_test2, macro_val2, macro_test2])
if show_details and epoch % 50 == 0:
print(
f'(T) | Epoch={epoch:03d}\n',
f'micro_val1={micro_val1:.4f}, micro_test1={micro_test1:.4f}, macro_val1={macro_val1:.4f}, macro_test1={macro_test1:.4f}\n',
f'micro_val2={micro_val2:.4f}, micro_test2={micro_test2:.4f}, macro_val2={macro_val2:.4f}, macro_test2={macro_test2:.4f}\n')
logger = torch.tensor(logger)
ind = torch.argmax(logger, dim=0)
res_gnn = []
res_trans = []
res_gnn.append(logger[ind[0]][0])
res_gnn.append(logger[ind[0]][1])
res_gnn.append(logger[ind[2]][2])
res_gnn.append(logger[ind[2]][3])
res_gnn.append(logger[ind[1]][1])
res_gnn.append(logger[ind[3]][3])
res_trans.append(logger[ind[4]][4])
res_trans.append(logger[ind[4]][5])
res_trans.append(logger[ind[6]][6])
res_trans.append(logger[ind[6]][7])
res_trans.append(logger[ind[5]][5])
res_trans.append(logger[ind[7]][7])
return res_gnn, res_trans
def run(args, config, device, data, patch, split_idx, alpha, tau, postfix):
learning_rate = args.learning_rate
# learning_rate2 = args.learning_rate2
weight_decay = args.weight_decay
gcn_wd = args.gcn_wd
num_hidden = config['num_hidden']
activation = ({'relu': F.relu, 'prelu': nn.PReLU()})[config['activation']]
num_layers = config['num_layers']
n_head = config['n_head']
num_epochs = config['num_epochs']
gcn_type = args.gcn_type
gcn_layers = args.gcn_layers
gcn_use_bn = args.gcn_use_bn
use_patch_attn = args.use_patch_attn
show_details = args.show_details
patch = patch.to(device)
num_nodes = data.graph['num_nodes']
num_classes = data.label.max() + 1
num_features = data.graph['node_feat'].shape[-1]
data.graph['node_feat'] = data.graph['node_feat'].to(device)
data.graph['edge_index'] = data.graph['edge_index'].to(device)
data.label = data.label.to(device)
split_idx['train'] = split_idx['train'].to(device)
split_idx['valid'] = split_idx['valid'].to(device)
split_idx['test'] = split_idx['test'].to(device)
label = F.one_hot(data.label, num_classes).float()
# model = Beyondformer(num_nodes, num_features, num_hidden, num_classes, activation,
# layers=num_layers, gnn_layers=gcn_layers, n_head=n_head, alpha=alpha, ratio=ratio).to(device)
model = CoBFormer(num_nodes, num_features, num_hidden, num_classes, activation, layers=num_layers,
gcn_layers=gcn_layers, gcn_type=gcn_type, n_head=n_head, alpha=alpha, tau=tau,
gcn_use_bn=gcn_use_bn, use_patch_attn=use_patch_attn).to(device)
# print(model)
if args.dataset in ['film', 'CiteSeer', 'Cora', 'PubMed', "Deezer"]:
optimizer = torch.optim.Adam([
{'params': model.bga.parameters(), 'weight_decay': weight_decay},
{'params': model.gcn.parameters(), 'weight_decay': gcn_wd}
], lr=learning_rate)
else:
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
patience = num_epochs
res_gnn, res_trans = co_early_stop_train(
num_epochs, patience,
model, data, label,
patch, split_idx,
optimizer, show_details,
postfix)
print("=== Train Final ===")
print(
f'micro_val1={res_gnn[0]:.4f}, micro_test1={res_gnn[1]:.4f}, macro_val1={res_gnn[2]:.4f}, macro_test1={res_gnn[3]:.4f}, micro_best1={res_gnn[4]:.4f}, macro_best1={res_gnn[5]:.4f},\n',
f'micro_val2={res_trans[0]:.4f}, micro_test2={res_trans[1]:.4f}, macro_val2={res_trans[2]:.4f}, macro_test2={res_trans[3]:.4f}, micro_best2={res_trans[4]:.4f}, macro_best2={res_trans[5]:.4f}\n')
return res_gnn, res_trans