-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver_fedgc.py
419 lines (335 loc) · 15.9 KB
/
server_fedgc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import ray
import torch
import torch.nn as nn
from models.parametrized_adj import PGE
import deeprobust.graph.utils as utils
from util import *
from collections import Counter
class Server(nn.Module):
def __init__(self, client_list, gnn_model, gib_model, self_train_model, total_train_labels, fea_dim, class_num, train_data_weights, test_data_weights, client_train_labels, args, **kwargs):
super().__init__()
self.args = args
self.client_list = client_list
self.gnn_model = gnn_model
self.gib_model = gib_model
self.self_train_model = self_train_model
self.total_train_labels = total_train_labels
self.class_num = class_num
self.lr = args.lr
self.outer_loop, self.inner_loop = get_loops(args)
# self.features = features
self.weight_decay = args.weight_decay
self.labels_syn = torch.LongTensor(self.generate_labels_syn(total_train_labels)).to(args.device)
self.fea_dim = fea_dim
self.nnodes_syn = len(self.labels_syn)
self.train_data_weights = train_data_weights
self.test_data_weights = test_data_weights
self.client_train_labels = client_train_labels
counter = Counter(self.total_train_labels)
#print(counter)
self.client_train_labels_ratio = []
for ct in self.client_train_labels:
c = Counter(ct)
ctlr = dict()
for key in c.keys():
ctlr[key] = c[key]*1.0 / counter[key]
self.client_train_labels_ratio.append(ctlr)
feat_ = np.random.normal(size = (self.nnodes_syn, fea_dim))
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(feat_)
feat_ = scaler.transform(feat_)
self.feat_syn = nn.Parameter(torch.FloatTensor(feat_).to(args.device))#14
nn.init.normal_(self.feat_syn, std=0.01)
self.pge = PGE(nfeat=self.fea_dim, nnodes=self.nnodes_syn, device=args.device,args=args).to(args.device)
self.optimizer_feat = torch.optim.Adam([self.feat_syn], lr=args.lr_feat)
self.optimizer_pge = torch.optim.Adam(self.pge.parameters(), lr=args.lr_adj)
print('adj_syn:', (self.nnodes_syn,self.nnodes_syn), 'feat_syn:', self.feat_syn.shape)
if 'all_data' in kwargs:
if(kwargs['all_data']!=None):
self.class_dict = None
self.all_feature, self.all_adj, self.all_labels, self.all_idx_train, self.all_idx_val, self.all_idx_test = kwargs['all_data']
if sp.issparse(self.all_feature):
self.all_feature = sparse_mx_to_torch_sparse_tensor(self.all_feature)
features = self.all_feature.to(self.args.device)
feat_sub, adj_sub = self.get_sub_adj_feat(features)
self.feat_syn.data.copy_(feat_sub)
def update_label_ratio(self, all_train_labels, client_train_labels):
counter = Counter(all_train_labels)
self.client_train_labels_ratio = []
for ct in client_train_labels:
c = Counter(ct)
ctlr = dict()
for key in c.keys():
ctlr[key] = c[key]*1.0 / counter[key]
self.client_train_labels_ratio.append(ctlr)
def init_gnn_param(self):
self.gnn_model.initialize()
#print(list(self.gnn_model.parameters())[0])
def init_gib_param(self):
self.gib_model.initialize()
def init_gib_param_layer(self):
self.gib_model.initialize_layer()
def init_self_train_model_param(self):
self.self_train_model.initialize()
def generate_labels_syn(self, labels_train):
counter = Counter(labels_train)
num_class_dict = {}
n = len(labels_train)#29
sorted_counter = sorted(counter.items(), key=lambda x:x[1])
sum_ = 0
labels_syn = []
self.syn_class_indices = {}
for ix, (c, num) in enumerate(sorted_counter):
if ix == len(sorted_counter) - 1:
num_class_dict[c] = int(n * self.args.reduction_rate) - sum_
self.syn_class_indices[c] = [len(labels_syn), len(labels_syn) + num_class_dict[c]]
labels_syn += [c] * num_class_dict[c]
else:
num_class_dict[c] = max(int(num * self.args.reduction_rate), 1)
sum_ += num_class_dict[c]
self.syn_class_indices[c] = [len(labels_syn), len(labels_syn) + num_class_dict[c]]
labels_syn += [c] * num_class_dict[c]
self.num_class_dict = num_class_dict
return labels_syn
def aggregate_self_train(self, param_list):
flag=False
number = len(param_list)
for parameter in param_list:
model_grad = parameter
if not flag:
flag = True
gradient_model = []
for i in range(len(model_grad)):
gradient_model.append(model_grad[i])
else:
for i in range(len(model_grad)):
gradient_model[i] += model_grad[i]
for i in range(len(gradient_model)):
gradient_model[i] = gradient_model[i] / number
ls_model_param = list(self.self_train_model.parameters())
for i in range(len(ls_model_param)):
ls_model_param[i].data = ls_model_param[i].data - self.lr * gradient_model[i] - self.weight_decay * ls_model_param[i].data
def aggregate(self, param_list):
if(self.args.no_pclass_agg==True):
model_real_gradient_per_class = {}
for c in range(self.class_num):
c_num = 0
for parameter in param_list:
if(c in parameter.keys()):
c_num+=1
if(c not in model_real_gradient_per_class.keys()):
model_real_gradient_per_class[c] = parameter[c]
else:
for i,p in enumerate(parameter[c]):
model_real_gradient_per_class[c][i]+=p
#model_real_gradient_per_class[c]/=c_num #fedavg
model_real_gradient_per_class[c] = [p/c_num for p in model_real_gradient_per_class[c]]
self.model_real_gradient_per_class = model_real_gradient_per_class
else:
model_real_gradient_per_class = {}
for c in range(self.class_num):#每一类
c_num = 0
for index, parameter in enumerate(param_list):#每一个client
if(c in parameter.keys()):
c_num+=1
if(c not in model_real_gradient_per_class.keys()):
model_real_gradient_per_class[c] = parameter[c]
for i,p in enumerate(parameter[c]):
model_real_gradient_per_class[c][i]=p*self.client_train_labels_ratio[index][c]
#model_real_gradient_per_class[c] = parameter[c]
else:
for i,p in enumerate(parameter[c]):
model_real_gradient_per_class[c][i]+=p*self.client_train_labels_ratio[index][c]
#model_real_gradient_per_class[c]/=c_num #fedavg
#model_real_gradient_per_class[c] = [p/c_num for p in model_real_gradient_per_class[c]]
self.model_real_gradient_per_class = model_real_gradient_per_class
def distribute(self, client_list):
for client in client_list:
client.update.remote(self.gnn_model)
def distribute_gib_model(self, client_list):
#print(list(self.gib_model.parameters())[0])
for client in client_list:
client.update_gib_model.remote(self.gib_model)
def distribute_self_train(self, client_list):
for client in client_list:
client.update_self_train.remote(self.self_train_model)
def retrieve_class(self, c, num = 256):
if self.class_dict is None:
self.class_dict = {}
for i in range(self.class_num):
self.class_dict['class_%s'%i] = (self.all_labels[self.all_idx_train] == i)
idx = np.arange(len(self.all_labels[self.all_idx_train]))
idx = idx[self.class_dict['class_%s'%c]]
return np.random.permutation(idx)[:num]#num是合成的标签中类别为c的数量,这个函数目的是为合成的类随机找一些原始数据中的样本(train)
def get_sub_adj_feat(self, features):
#args = self.args
idx_selected = []
from collections import Counter
counter = Counter(self.labels_syn.cpu().numpy())
for c in range(self.class_num):
tmp = self.retrieve_class(c, num=counter[c])
tmp = list(tmp)
idx_selected = idx_selected + tmp
idx_selected = np.array(idx_selected).reshape(-1)
features = features[self.all_idx_train][idx_selected]
from sklearn.metrics.pairwise import cosine_similarity
# features[features!=0] = 1
k = 2
sims = cosine_similarity(features.cpu().numpy())
sims[(np.arange(len(sims)), np.arange(len(sims)))] = 0
for i in range(len(sims)):
indices_argsort = np.argsort(sims[i])
sims[i, indices_argsort[: -k]] = 0
adj_knn = torch.FloatTensor(sims).to(self.args.device)
return features, adj_knn
def train_(self, it, ol):
args = self.args
feat_syn, pge, labels_syn = self.feat_syn, self.pge, self.labels_syn
syn_class_indices = self.syn_class_indices
model_parameters = list(self.gnn_model.parameters())
optimizer_model = torch.optim.Adam(model_parameters, lr=args.lr_model)
self.gnn_model.train()
adj_syn = pge(self.feat_syn)
adj_syn_norm = utils.normalize_adj_tensor(adj_syn, sparse=False)
feat_syn_norm = feat_syn
BN_flag = False
for module in self.gnn_model.modules():
if 'BatchNorm' in module._get_name(): #BatchNorm
BN_flag = True
if BN_flag:
self.gnn_model.train() # for updating the mu, sigma of BatchNorm
#output_real = self.gnn_model.forward(features, adj_norm)
for module in self.gnn_model.modules():
if 'BatchNorm' in module._get_name(): #BatchNorm
module.eval() # fix mu and sigma of every BatchNorm layer
#
loss = torch.tensor(0.0).to(self.args.device)
loss_avg = 0
for c in range(self.class_num):
gw_real = self.model_real_gradient_per_class[c]
output_syn = self.gnn_model.forward(feat_syn, adj_syn_norm)
ind = syn_class_indices[c]
loss_syn = F.nll_loss(
output_syn[ind[0]: ind[1]],
labels_syn[ind[0]: ind[1]])
gw_syn = torch.autograd.grad(loss_syn, model_parameters, create_graph=True)
coeff = self.num_class_dict[c] / max(self.num_class_dict.values())
loss += coeff * match_loss(gw_syn, gw_real, args, device=args.device)
loss_avg += loss.item()
loss_avg /= self.class_num
# TODO: regularize
if args.alpha > 0:
loss_reg = args.alpha * regularization(adj_syn, utils.tensor2onehot(labels_syn))
else:
loss_reg = torch.tensor(0)
loss = loss + loss_reg
# update sythetic graph
self.optimizer_feat.zero_grad()
self.optimizer_pge.zero_grad()
loss.backward()
if it % 50 < 10:
self.optimizer_pge.step()
else:
self.optimizer_feat.step()
if args.debug and ol % 5 ==0:
print('Gradient matching loss:', loss.item())
if ol == self.outer_loop - 1:
# print('loss_reg:', loss_reg.item())
# print('Gradient matching loss:', loss.item())
return loss_avg
feat_syn_inner = feat_syn.detach()
adj_syn_inner = pge.inference(feat_syn_inner)
adj_syn_inner_norm = utils.normalize_adj_tensor(adj_syn_inner, sparse=False)
feat_syn_inner_norm = feat_syn_inner
for j in range(self.inner_loop):
optimizer_model.zero_grad()
output_syn_inner = self.gnn.model.forward(feat_syn_inner_norm, adj_syn_inner_norm)
loss_syn_inner = F.nll_loss(output_syn_inner, labels_syn)
loss_syn_inner.backward()
# print(loss_syn_inner.item())
optimizer_model.step() # update gnn param
return loss_avg
def get_syn_graph(self):
feat_syn, pge, labels_syn = self.feat_syn.detach(), \
self.pge, self.labels_syn
adj_syn = pge.inference(feat_syn)
args = self.args
if self.args.save:
torch.save(adj_syn, f'saved_ours/adj_{args.dataset}_{args.reduction_rate}_{args.seed}.pt')
torch.save(feat_syn, f'saved_ours/feat_{args.dataset}_{args.reduction_rate}_{args.seed}.pt')
if self.args.lr_adj == 0:
n = len(labels_syn)
adj_syn = torch.zeros((n, n))
condensed_graph = (feat_syn, adj_syn, labels_syn)
return condensed_graph
def test(self):
condensed_graph = self.get_syn_graph()
#save
feat_syn, pge, labels_syn = condensed_graph
save_c = [feat_syn, pge, labels_syn]
import pickle
with open('condensed_graph.pkl', 'wb') as f:
pickle.dump(save_c, f)
res_dict = {}
for pd in range(self.args.n_trainer):
res_dict[pd] = None
reses = [client.test.remote(condensed_graph) for client in self.client_list]
while True:
ready, left = ray.wait(reses, num_returns=1, timeout=None)
if ready:
temp = ray.get(ready)
res_dict[temp[0][1]] = temp[0][0]
reses = left
if not reses:
break
res_list = list(res_dict.values())
res = np.array(res_list)
avg_train_acc = np.average(res[:,0], weights = self.train_data_weights, axis = 0)#weighted mean
avg_test_acc = np.average(res[:,1], weights = self.test_data_weights, axis = 0)
#print(res[:,0], res[:,1])
res = np.array([avg_train_acc, avg_test_acc])
#res.mean(0)#
return res
def test_gib_model(self):
res_dict = {}
res_list = []
for pd in range(self.args.n_trainer):
res_dict[pd] = None
reses = [client.test_gib_model.remote() for client in self.client_list]#本地测试
while True:
ready, left = ray.wait(reses, num_returns=1, timeout=None)
if ready:
temp = ray.get(ready)
res_dict[temp[0][1]] = temp[0][0]
reses = left
if not reses:
break
res_list = list(res_dict.values())
res = np.array(res_list)
avg_train_acc = np.average(res[:,0], weights = self.train_data_weights, axis = 0)#weighted mean
avg_test_acc = np.average(res[:,1], weights = self.test_data_weights, axis = 0)
#print(res[:,0], res[:,1])
res = np.array([avg_train_acc, avg_test_acc])
return res
def test_self_train(self):
res_list = []
res_dict = {}
for pd in range(self.args.n_trainer):
res_dict[pd] = None#
reses = [client.test_self_train.remote() for client in self.client_list]
while True:
ready, left = ray.wait(reses, num_returns=1, timeout=None)
if ready:
temp = ray.get(ready)
res_dict[temp[0][1]] = temp[0][0]
reses = left
if not reses:
break
res_list = list(res_dict.values())
res = np.array(res_list)
avg_train_acc = np.average(res[:,0], weights = self.train_data_weights, axis = 0)#weighted mean
avg_test_acc = np.average(res[:,1], weights = self.test_data_weights, axis = 0)
#print(res[:,0], res[:,1])
res = np.array([avg_train_acc, avg_test_acc])
return res