-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathdistribution.py
164 lines (131 loc) · 4.85 KB
/
distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import random
import os
import json
import scipy
import scipy.stats
jian_file = 'result2'
grid_file = 'result2'
datasets = ['HGBn-ACM', 'HGBn-DBLP', 'HGBn-IMDB', 'HNE-PubMed', 'HGBn-Freebase', 'HGBn-ACM']
xL = [[[0, 1], [0, 1], [0, 1],[0, 1] ,[0, 1],[0, 1],],
[[0.8, 0.95], [0.7, 0.95], [0.5, 0.65], [0.1, 0.6], [0.2, 0.5], [0.2, 0.5]],]
yL = [[[0, 1], [0, 1], [0, 1],[0, 1], [0, 1],[0, 1],],
[[0.6, 1], [0.55, 1], [0.6, 1],[0.6, 1], [0.6, 1],[0.6, 1]]]
# jian_file = 'result2'
# grid_file = 'result2'
# datasets = ['HGBl-ACM', 'HGBl-DBLP', 'HGBl-IMDB', 'HGBl-PubMed', 'HGBl-amazon', 'HGBl-LastFM']
# xL = [[[0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1]],
# [[0.8, 1], [0.6, 1], [0.5, 1], [0.7, 1], [0.8, 1],[0.8, 1]]]
# yL = [[[0,1], [0,1], [0,1],[0,1], [0,1],[0,1],],
# [[0.6, 1], [0.6, 1], [0.6, 1],[0.6, 1], [0.6, 1],[0.6, 1],]]
score = 'score'
dim = 'model_family'
num_data = len(datasets)
# Detectron colors
_COLORS = np.array([
0.000, 0.447, 0.741,
0.850, 0.325, 0.098,
0.929, 0.694, 0.125,
0.494, 0.184, 0.556,
0.466, 0.674, 0.188
]).astype(np.float32).reshape((-1, 3))
# Random number generator seed
_RNG_SEED = 1
# Fix RNG seeds
random.seed(_RNG_SEED)
np.random.seed(_RNG_SEED)
# Directory where sweep summaries are stored
_DATA_DIR = '.'
def load_sweep(sweep_name):
"""Loads a sweep summary."""
summary_path = os.path.join(_DATA_DIR, '{}.csv'.format(sweep_name))
with open(summary_path, 'r') as f:
sweep_summary = pd.read_csv(f, sep=',')
return sweep_summary
# Load ResNet sweep
results1 = load_sweep('{}'.format(jian_file))
results2 = load_sweep('{}'.format(grid_file))
def draw( i, j, ax, has_y=True, has_x=True):
if i == 0:
results = results1
else:
results = results2
dataset = datasets[j]
homo = results[(results[dim] == 'homo') & (results['dataset'] == dataset)]
homo = set(homo[score].values.tolist())
relation = results[(results[dim] == 'relation') & (results['dataset'] == dataset)]
relation = set(relation[score].values.tolist())
mp = results[(results[dim] == 'metapath') & (results['dataset'] == dataset)]
mp = set(mp[score].values.tolist())
mix = results[(results[dim] == 'mixed') & (results['dataset'] == dataset)]
mix = set(mix[score].values.tolist())
# Text experiment, point estimates
random.seed(_RNG_SEED)
num_trials = 5000
N_mp = len(mp)
N_relation = len(relation)
N_homo = len(homo)
N_mix = len(mix)
random.seed(_RNG_SEED)
err_homo = sorted([j for j in homo])
err_mp = sorted([j for j in mp])
err_relation = sorted([j for j in relation])
err_mix = sorted([j for j in mix])
edf_homo = np.arange(N_homo) / float(N_homo - 1)
edf_relation = np.arange(N_relation) / float(N_relation - 1)
edf_mp = np.arange(N_mp) / float(N_mp - 1)
edf_mix = np.arange(N_mix) / float(N_mix)
ax.plot(
err_homo, edf_homo, color=_COLORS[1], linewidth=2, alpha=0.8,
zorder=1, label='{}=homo'.format(dim)
)
ax.plot(
err_relation, edf_relation, color=_COLORS[0], linewidth=2, alpha=0.8,
zorder=0, label='{}=relation'.format(dim)
)
ax.plot(
err_mp, edf_mp, color=_COLORS[2], linewidth=2, alpha=0.8,
zorder=1, label='{}=metapath'.format(dim)
)
# ax.plot(
# err_mix, edf_mix, color=_COLORS[3], linewidth=2, alpha=0.8,
# zorder=0, label='{}=mixed'.format(dim)
# )
#ax.set_xlim([4.5, 13.5])
ax.set_xlim(xL[i][j])
ax.set_ylim(yL[i][j])
#ax.set_xticks([0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1])
if not has_x:
ax.set_xlabel('', fontsize=20)
else:
ax.set_xlabel('{}'.format(dataset), fontsize=20)
if not has_y:
ax.set_ylabel('', fontsize=20)
else:
ax.set_ylabel('cumulative prob.', fontsize=20)
ax.grid(alpha=0.4)
#ax.legend(loc='upper left', prop={'size': 14})
r, c = 2, num_data
l_w, l_h = 4, 3
r_w, r_h = 4, 3
fig, axes = plt.subplots(
nrows=r, ncols=c,
figsize=(22, 6),
gridspec_kw = {'width_ratios': [2] * num_data}
)
for i in range(2):
for j in range(len(datasets)):
draw(i, j, axes[i, j], has_x = i==1, has_y= j == 0)
plt.tight_layout()
#plt.subplots_adjust(left=0.1, bottom=0.2, right=0.85, top=0.9, hspace=0.4, wspace=0.5)
plt.subplots_adjust(left=0.05, bottom=0.2, right=0.97, top=0.9, hspace=0.3, wspace=0.25)
lines, labels = fig.axes[-1].get_legend_handles_labels()
fig.legend(lines, labels, loc='center right', title_fontsize= 'large', )
path = 'figs/1112'
if not os.path.exists(path):
os.makedirs(path)
plt.savefig('{}/all_{}_node_1112.png'.format(path, dim), dpi=300)
plt.show()