-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
82 lines (68 loc) · 2.66 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# coding=utf-8
from typing import Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from layers import create_spectral_features, MLP, PolarGateConv, restPolarGateConv
class PolarGate(nn.Module):
def __init__(
self,
args,
node_num: int,
device: torch.device,
in_dim: int = 64,
out_dim: int = 64,
layer_num: int = 2,
lamb: float = 5,
norm_emb: bool = False,
**kwargs
):
super().__init__(**kwargs)
self.args = args
self.node_num = node_num
self.in_dim = in_dim
self.out_dim = out_dim
self.lamb = lamb
self.device = device
self.pos_edge_index = None
self.neg_edge_index = None
self.x = None
self.conv1 = PolarGateConv(in_dim, out_dim // 2, first_aggr=True)
self.convs = torch.nn.ModuleList()
for _ in range(layer_num - 1):
self.convs.append(
restPolarGateConv(out_dim // 2, out_dim // 2, first_aggr=False,
norm_emb=norm_emb))
self.weight = torch.nn.Linear(self.out_dim, self.out_dim)
self.readout_prob = MLP(self.out_dim, self.out_dim, 1, num_layer=3, p_drop=0.2, norm_layer='batchnorm',
act_layer='relu')
self.reset_parameters()
def reset_parameters(self):
self.conv1.reset_parameters()
for conv in self.convs:
conv.reset_parameters()
self.weight.reset_parameters()
def get_x_edge_index(self, init_emb, edge_index_s):
self.pos_edge_index = edge_index_s[edge_index_s[:, 2] > 0][:, :2].t()
self.neg_edge_index = edge_index_s[edge_index_s[:, 2] < 0][:, :2].t()
if init_emb is None:
init_emb = create_spectral_features(
pos_edge_index=self.pos_edge_index,
neg_edge_index=self.neg_edge_index,
node_num=self.node_num,
dim=self.in_dim
).to(self.device)
else:
init_emb = init_emb
self.x = init_emb
def forward(self, init_emb, edge_index_s) -> Tuple[Tensor, Tensor]:
self.get_x_edge_index(init_emb, edge_index_s)
z = torch.tanh(self.conv1(
self.x, self.pos_edge_index, self.neg_edge_index))
for conv in self.convs:
z = torch.tanh(conv(z, self.pos_edge_index, self.neg_edge_index))
z = torch.tanh(self.weight(z))
prob = self.readout_prob(z)
prob = F.sigmoid(prob)
return z, prob