-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
64 lines (49 loc) · 1.74 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
import utils
class myDataset(Dataset):
def __init__(self):
ratio_min=0
ratio_max=0.8
npynamecond= 'conditioning'+'_'+str(ratio_min)+'_'+str(ratio_max)+'.npy'
npynamedata= 'cdatamatrix'+'_'+str(ratio_min)+'_'+str(ratio_max)+'.npy'
self.cond=np.load(npynamecond)
self.data=np.load(npynamedata)
self.num_samples=self.data.shape[0]*self.data.shape[1]
def __getitem__(self, index):
if index < 0 or index >= 100000000:
raise IndexError
nbatch, sample_in_batch = divmod(index, 128)
print('sample in batch', sample_in_batch)
begseq = nbatch * 1040 + 80
print('begseq', begseq)
fromseq = begseq - 80
print( 'fromseq' , fromseq )
toseq = begseq + 1040
print( 'toseq' , toseq )
reset =False
data = self.data[sample_in_batch][nbatch][fromseq:toseq-1]
print('data get item ', data)
target = self.data[sample_in_batch][nbatch][begseq:toseq]
print('target', target)
return (data, target)
def __len__(self):
return self.num_samples
dset = myDataset()
print('Size dataset:', len(dset))
dloader = DataLoader(dset, 128, shuffle=False, drop_last = True)
print ('END LOADING DATA', '*'*40)
test=dset[1]
print(test)
iteration, num_epochs = (0,2)
for epoch in range(num_epochs):
print('ep')
for (iteration, fulldata) in enumerate(dloader, iteration + 1):
print('op')
(data, target) = fulldata
print('Epoch=', epoch, ' Iteration=', iteration)
data2 = data
print('Data', data2)
target2 = target
print('Target', target2)