-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
216 lines (190 loc) · 9.21 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import argparse
import pprint
from data import dataloader
from run_networks import model
import warnings
import yaml
import numpy as np
from utils import source_import
from pathlib import Path
import torch.backends.cudnn as cudnn
data_root_dict = {'ImageNet': '/data1/ILSVRC/Data/CLS-LOC',
'iNaturalist18': '/nas/dataset/others/iNaturalist18',
'Places': '/data1/Places365/',
'CIFAR100': '/data2/CIFAR100',}
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', default=None, type=str)
parser.add_argument('--seed', default=None, type=int)
parser.add_argument('--test', default=False, action='store_true')
parser.add_argument('--save_feature', default=False, action='store_true')
parser.add_argument('--batch_size', type=int, default=None)
parser.add_argument('--exp_dir', type=str, default=None)
parser.add_argument('--alpha', type=float, default=0.1)
parser.add_argument('--lr', type=float, default=0.2)
parser.add_argument('--cifar_imb_ratio', type=float, default=0.1, choices=[0.01, 0.02, 0.1])
parser.add_argument("--remine_lambda", default=None, type=float)
parser.add_argument("--work_dir", default="./exp_results", type=str, help="output dir")
parser.add_argument("--exp_name", default="test", type=str, help="exp name")
parser.add_argument('--gpu', default='0', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument("--no-use-dv", action="store_true")
parser.add_argument("--test_imb_ratio", type=float, default=None,
help="Give explicit imbalance ratio for test dataset.")
parser.add_argument("--exist_only", type=int, default=0)
parser.add_argument("--test-reverse", type=int, default=0)
parser.add_argument("--train-reverse", action="store_true")
parser.add_argument('--root', default=None, type=str)
parser.add_argument('--xERM', default=False, action='store_true')
args = parser.parse_args()
args.test_reverse = bool(args.test_reverse)
print(f'args: {args}')
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
output_dir = f'{args.work_dir}/{args.exp_name}'
Path(output_dir).mkdir(parents=True, exist_ok=True)
# ============================================================================
# Random Seed
import torch
import random
if args.seed is not None:
print('=======> Using Fixed Random Seed <========')
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
cudnn.deterministic = True
# ============================================================================
# LOAD CONFIGURATIONS
with open(args.cfg) as f:
config = yaml.load(f)
test_mode = args.test
save_mode = args.save_feature # only in eval
training_opt = config['training_opt']
dataset = training_opt['dataset']
if not os.path.isdir(training_opt['exp_dir']):
os.makedirs(training_opt['exp_dir'])
if args.root is not None:
data_root = args.root
else:
data_root = data_root_dict[dataset.rstrip('_LT')]
print('Loading dataset from: %s' % data_root)
pprint.pprint(config)
# ============================================================================
# TRAINING
if not args.test and not args.xERM:
# during training, different sampler may be applied
sampler_defs = training_opt['sampler']
if sampler_defs:
if sampler_defs['type'] == 'ClassAwareSampler':
sampler_dic = {
'sampler': source_import(sampler_defs['def_file']).get_sampler(),
'params': {'num_samples_cls': sampler_defs['num_samples_cls']}
}
elif sampler_defs['type'] in ['MixedPrioritizedSampler',
'ClassPrioritySampler']:
sampler_dic = {
'sampler': source_import(sampler_defs['def_file']).get_sampler(),
'params': {k: v for k, v in sampler_defs.items() \
if k not in ['type', 'def_file']}
}
else:
sampler_dic = None
# generated sub-datasets all have test split
splits = ['train', 'val']
if dataset not in ['iNaturalist18', 'ImageNet']:
splits.append('test')
data = {x: dataloader.load_data(data_root=data_root,
dataset=dataset, phase=x,
batch_size=training_opt['batch_size'],
sampler_dic=sampler_dic,
num_workers=training_opt['num_workers'],
top_k_class=training_opt['top_k'] if 'top_k' in training_opt else None,
cifar_imb_ratio=training_opt['cifar_imb_ratio'] if 'cifar_imb_ratio' in training_opt else None,
reverse=args.train_reverse)
for x in splits}
training_model = model(config, data, test=False)
training_model.train()
# ============================================================================
# TESTING
elif args.test and not args.xERM:
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data",
UserWarning)
print('Under testing phase, we load training data simply to calculate training data number for each class.')
if 'iNaturalist' in dataset.rstrip('_LT'):
splits = ['train', 'val']
test_split = 'val'
else:
splits = ['train', 'val', 'test']
test_split = 'test'
data = {x: dataloader.load_data(data_root=data_root,
dataset=dataset, phase=x,
batch_size=training_opt['batch_size'],
sampler_dic=None,
num_workers=training_opt['num_workers'],
top_k_class=training_opt['top_k'] if 'top_k' in training_opt else None,
shuffle=False,
cifar_imb_ratio=training_opt['cifar_imb_ratio'] if 'cifar_imb_ratio' in training_opt else None,
test_imb_ratio=args.test_imb_ratio,
reverse=args.train_reverse if x == "train" else args.test_reverse)
for x in splits}
training_model = model(config, data, test=True,
test_imb_ratio=args.test_imb_ratio,
test_reverse=args.test_reverse)
# load checkpoints
training_model.load_model(args.exp_dir)
training_model.eval(phase=test_split, save_feat=save_mode)
elif not args.test and args.xERM:
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data",
UserWarning)
print('Under testing phase, we load training data simply to calculate training data number for each class.')
if 'iNaturalist' in training_opt['dataset']:
splits = ['train', 'val']
test_split = 'val'
else:
splits = ['train', 'val', 'test']
test_split = 'test'
if 'ImageNet' == training_opt['dataset']:
splits = ['train', 'val']
test_split = 'val'
data = {x: dataloader.load_data(data_root=data_root,
dataset=dataset, phase=x,
batch_size=training_opt['batch_size'],
sampler_dic=None,
num_workers=training_opt['num_workers'],
top_k_class=training_opt['top_k'] if 'top_k' in training_opt else None,
shuffle=True,
cifar_imb_ratio=training_opt['cifar_imb_ratio'] if 'cifar_imb_ratio' in training_opt else None,)
for x in splits}
training_model = model(config, data, test=True)
# load checkpoints
training_model.load_model(args.exp_dir)
print('=> Start xERM process .......')
training_model.xERM_train()
elif args.test and args.xERM:
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data",
UserWarning)
print('Under testing phase, we load training data simply to calculate training data number for each class.')
if 'iNaturalist' in training_opt['dataset']:
splits = ['train', 'val']
test_split = 'val'
else:
splits = ['train', 'val', 'test']
test_split = 'test'
if 'ImageNet' == training_opt['dataset']:
splits = ['train', 'val']
test_split = 'val'
data = {x: dataloader.load_data(data_root=data_root,
dataset=dataset, phase=x,
batch_size=training_opt['batch_size'],
sampler_dic=None,
num_workers=training_opt['num_workers'],
top_k_class=training_opt['top_k'] if 'top_k' in training_opt else None,
shuffle=True,
cifar_imb_ratio=training_opt['cifar_imb_ratio'] if 'cifar_imb_ratio' in training_opt else None,)
for x in splits}
training_model = model(config, data, test=True)
# load checkpoints
training_model.load_model(args.exp_dir)
print('=> Start xERM evaluation .......')
training_model.xERM_eval()
print('='*25, ' ALL COMPLETED ', '='*25)