-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsqkr.py
105 lines (86 loc) · 3.4 KB
/
sqkr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import numpy as np
def kashin_representation(x, u, eta=0.4, delta=0.8):
"""Computes the kashin representation of x."""
(kashin_n, _) = u.shape
a = np.zeros((kashin_n, 1))
k = 1 / ((1 - eta) * np.sqrt(delta)) # Set kashin level to be k
m = eta / np.sqrt(delta * kashin_n)
y = x
itr = int(np.log(kashin_n))
for _ in range(itr):
b = u @ y
b_hat = np.clip(b, -m, m)
y = y - u.T @ b_hat
a = a + b_hat
m = eta * m
b = u @ y
tilde_y = u.T @ b
y = y - tilde_y
a = a + b
return [a, k / np.sqrt(kashin_n)]
def rand_quantize(a, a_bdd):
return (np.random.binomial(1, (np.clip(a, -a_bdd, a_bdd) + a_bdd) / (2 * a_bdd)) - 1 / 2) * 2 * a_bdd
def rand_sampling(q, k):
"""Outputs k sampling matrices and an aggregation of q*sampling_mat."""
(kashin_n, n) = q.shape
sampling_mat_sum = np.zeros((n, kashin_n))
sampling_mat_list = []
for _ in range(k):
spl = np.eye(kashin_n)[np.random.choice(kashin_n, n)]
sampling_mat_sum = sampling_mat_sum + spl
sampling_mat_list.append(spl.T)
return [sampling_mat_list, sampling_mat_sum.T, q * sampling_mat_sum.T / k]
def krr(k, eps, q_sampling, sampling_mat_list, a_bdd):
"""Perturb each column of q, as a k-bit string, via k-RR mechanism."""
q_perturb = q_sampling.copy()
(kashin_n, n) = q_sampling.shape
for j in range(n):
if np.random.uniform(0, 1) > (np.exp(eps) - 1) / (np.exp(eps) + 2**k - 1):
noise = np.zeros(kashin_n)
for i in range(k):
# create a random {-1, +1}^N vector and filter it by sampling matrices
noise = (
noise
+ (2 * np.random.binomial(1, 1 / 2 * np.ones(kashin_n)) - 1)
* sampling_mat_list[i][:, j].reshape(
-1,
)
/ k
)
q_perturb[:, j] = noise * a_bdd
return q_perturb
def estimate(k, eps, q_perturb):
return (np.exp(eps) + 2**k - 1) / (np.exp(eps) - 1) * q_perturb
def kashin_encode(u, x, k, eps):
"""This function Kashin encodes the data.
Args:
u: A tight frame (i.e. (n_kashin, d) matrix) used to compute the
Kashin's representation.
x: A (d, n)-matrix consisting of n clients data.
k: The communication cost (i.e., the number of bits of the compressed data).
eps: The privacy budget.
Returns:
q: The quantized data.
q_sampling: The quantized-subsampled data.
q_perturb: The quantized-subsampled-privatized data.
"""
[a, a_bdd] = kashin_representation(x, u)
q = rand_quantize(a, a_bdd)
[sampling_mat_list, _, q_sampling] = rand_sampling(q, k)
q_perturb = krr(k, eps, q_sampling, sampling_mat_list, a_bdd)
return [q, q_sampling, q_perturb]
def kashin_decode(u, k, eps, q_perturb):
"""This function Kashin decodes.
Args:
u: A tight frame (i.e. (n_kashin, d) matrix) used to compute the
Kashin's representation.
k: The communication cost (i.e., the number of bits of the compressed data).
eps: The privacy budget.
q_perturb: The quantized-subsampled-privatized data.
Returns:
x_estimated: The estimated mean vector.
"""
(capital_n, _) = u.shape
q_unbiased = estimate(k, eps, q_perturb)
x_estimated = u.T @ (np.mean(q_unbiased * capital_n, axis=1)).reshape(-1, 1)
return x_estimated