-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathtrain.py
95 lines (66 loc) · 2.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard, LearningRateScheduler
from keras.optimizers import SGD, Adam
from keras.losses import squared_hinge
import os
import argparse
import keras.backend as K
from models.model_factory import build_model
from utils.config_utils import Config
from utils.load_data import load_dataset
# parse arguments
parser = argparse.ArgumentParser(description='Model training')
parser.add_argument('-c', '--config_path', type=str,
default=None, help='Configuration file')
parser.add_argument('-o' ,'--override',action='store',nargs='*',default=[])
arguments = parser.parse_args()
override_dir = {}
for s in arguments.override:
s_s = s.split("=")
k = s_s[0].strip()
v = "=".join(s_s[1:]).strip()
override_dir[k]=v
arguments.override = override_dir
cfg = arguments.config_path
cf = Config(cfg, cmd_args = arguments.override)
# if necessary, only use the CPU for debugging
if cf.cpu:
os.environ["CUDA_VISIBLE_DEVICES"] = ""
# ## Construct the network
print('Construct the Network\n')
# In[4]:
model = build_model(cf)
print('setting up the network and creating callbacks\n')
early_stop = EarlyStopping(monitor='loss', min_delta=0.001, patience=10, mode='min', verbose=1)
checkpoint = ModelCheckpoint(cf.out_wght_path, monitor='val_acc', verbose=1, save_best_only=True, mode='max', period=1)
tensorboard = TensorBoard(log_dir='./logs/' + str(cf.tensorboard_name), histogram_freq=0, write_graph=True, write_images=False)
print('loading data\n')
train_data, val_data, test_data = load_dataset(cf.dataset)
# learning rate schedule
def scheduler(epoch):
if epoch in cf.decay_at_epoch:
index = cf.decay_at_epoch.index(epoch)
factor = cf.factor_at_epoch[index]
lr = K.get_value(model.optimizer.lr)
IT = train_data.X.shape[0]/cf.batch_size
current_lr = lr * (1./(1.+cf.decay*epoch*IT))
K.set_value(model.optimizer.lr,current_lr*factor)
print('\nEpoch {} updates LR: LR = LR * {} = {}\n'.format(epoch+1,factor, K.get_value(model.optimizer.lr)))
return K.get_value(model.optimizer.lr)
lr_decay = LearningRateScheduler(scheduler)
#sgd = SGD(lr=cf.lr, decay=cf.decay, momentum=0.9, nesterov=True)
adam= Adam(lr=cf.lr, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=cf.decay)
print('compiling the network\n')
model.compile(loss=squared_hinge, optimizer=adam, metrics=['accuracy'])
if cf.finetune:
print('Load previous weights\n')
model.load_weights(cf.out_wght_path)
else:
print('No weights preloaded, training from scratch\n')
print('(re)training the network\n')
model.fit(train_data.X,train_data.y,
batch_size = cf.batch_size,
epochs = cf.epochs,
verbose = cf.progress_logging,
callbacks = [checkpoint, tensorboard,lr_decay],
validation_data = (val_data.X,val_data.y))
print('Done\n')