-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathinfer_for_bert.py
140 lines (117 loc) · 5.47 KB
/
infer_for_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# -*- coding: utf-8 -*-
import os
import pickle
import torch
import torch.nn.functional as F
import numpy as np
from pytorch_pretrained_bert import BertModel
from data_utils_bert import build_tokenizer, build_embedding_matrix, Tokenizer4Bert, ABSADataset, pad_and_truncate
from models import SenticGCN_BERT
from generate_sentic_dependency_graph import load_sentic_word, dependency_adj_matrix
class Inferer:
"""A simple inference example"""
def __init__(self, opt):
self.opt = opt
fname = {
'twitter': {
'train': './datasets/acl-14-short-data/train.raw',
'test': './datasets/acl-14-short-data/test.raw'
},
'rest14': {
'train': './datasets/semeval14/restaurant_train.raw',
'test': './datasets/semeval14/restaurant_test.raw'
},
'lap14': {
'train': './datasets/semeval14/laptop_train.raw',
'test': './datasets/semeval14/laptop_test.raw'
},
'rest15': {
'train': './datasets/semeval15/restaurant_train.raw',
'test': './datasets/semeval15/restaurant_test.raw'
},
'rest16': {
'train': './datasets/semeval16/restaurant_train.raw',
'test': './datasets/semeval16/restaurant_test.raw'
},
}
self.tokenizer = Tokenizer4Bert(self.opt.max_seq_len, self.opt.pretrained_bert_name)
bert = BertModel.from_pretrained(opt.pretrained_bert_name)
self.model = self.opt.model_class(bert, opt).to(opt.device)
print('loading model {0} ...'.format(opt.model_name))
self.model.load_state_dict(torch.load(opt.state_dict_path))
self.model = self.model
# switch model to evaluation mode
self.model.eval()
torch.autograd.set_grad_enabled(False)
def evaluate(self, raw_text, aspect):
senticNet = load_sentic_word()
con_text = '[CLS] ' + raw_text.lower() + ' [SEP] ' + aspect.lower() + " [SEP]"
#text_seqs = [self.tokenizer.text_to_sequence(raw_text.lower())]
#aspect_seqs = [self.tokenizer.text_to_sequence(aspect.lower())]
#left_seqs = [self.tokenizer.text_to_sequence(raw_text.lower().split(aspect.lower())[0])]
text_indices = [self.tokenizer.text_to_sequence(raw_text.lower())]
aspect_indices = [self.tokenizer.text_to_sequence(aspect.lower())]
left_indices = [self.tokenizer.text_to_sequence(raw_text.lower().split(aspect.lower())[0])]
left_len = np.sum(left_indices != 0)
aspect_len = np.sum(aspect_indices != 0)
text_len = np.sum(text_indices != 0)
text_indices = torch.tensor(text_indices, dtype=torch.int64)
aspect_indices = torch.tensor(aspect_indices, dtype=torch.int64)
left_indices = torch.tensor(left_indices, dtype=torch.int64)
concat_bert_indices = [self.tokenizer.text_to_sequence(con_text)]
concat_segments_indices = [0] * (text_len + 2) + [1] * (aspect_len + 1)
concat_segments_indices = [pad_and_truncate(concat_segments_indices, self.opt.max_seq_len)]
concat_bert_indices = torch.tensor(concat_bert_indices, dtype=torch.int64)
concat_segments_indices = torch.tensor(concat_segments_indices, dtype=torch.int64)
sdat_graph = dependency_adj_matrix(raw_text.lower(), aspect.lower(), senticNet)
sdat_graph = np.pad(sdat_graph, \
((0,self.tokenizer.max_seq_len-sdat_graph.shape[0]),(0,self.tokenizer.max_seq_len-sdat_graph.shape[0])), 'constant')
sdat_graph = torch.tensor([sdat_graph])
data = {
'text_bert_indices': concat_bert_indices,
'text_indices': text_indices,
'aspect_indices': aspect_indices,
'bert_segments_indices': concat_segments_indices,
'left_indices': left_indices,
'sdat_graph': sdat_graph,
}
t_inputs = [data[col].to(opt.device) for col in self.opt.inputs_cols]
t_outputs = self.model(t_inputs)
t_probs = F.softmax(t_outputs, dim=-1).cpu().numpy()
return t_probs
if __name__ == '__main__':
dataset = 'rest14'
# set your trained models here
model_state_dict_paths = {
'senticgcn_bert': 'state_dict/senticgcn_bert_'+dataset+'.pkl',
}
model_classes = {
'senticgcn_bert': SenticGCN_BERT,
}
input_colses = {
'senticgcn_bert': ['text_bert_indices', 'text_indices', 'aspect_indices', 'bert_segments_indices', 'left_indices', 'sdat_graph'],
}
class Option(object): pass
opt = Option()
opt.model_name = 'senticgcn_bert'
opt.model_class = model_classes[opt.model_name]
opt.inputs_cols = input_colses[opt.model_name]
opt.dataset = dataset
opt.state_dict_path = model_state_dict_paths[opt.model_name]
opt.bert_dim = 768
opt.hidden_dim = 300
opt.polarities_dim = 3
opt.max_seq_len = 85
opt.pretrained_bert_name = 'bert-base-uncased'
opt.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
raw_text = 'Food is always fresh and hot - ready to eat !'
aspect = 'food'
print('The input are as follows:')
print('Sentence:', raw_text)
print('Aspect:', aspect)
inf = Inferer(opt)
print('='*10, 'Inferring ......')
t_probs = inf.evaluate(raw_text, aspect)
infer_label = t_probs.argmax(axis=-1)[0] - 1
label_dict = {-1: 'Negative', 0: 'Neutral', 1: 'Positive'}
print('The test results is:', infer_label, label_dict[infer_label])