-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGeLB.R
137 lines (107 loc) · 6.4 KB
/
GeLB.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
library(caret)
library(randomForest)
library(parallel)
library(dplyr)
cores = parallel::detectCores()
## Wilcoxon-test
my.wilcox.test.p.value <- function(...) {
obj<-try(wilcox.test(...), silent=TRUE)
if (is(obj, "try-error"))
return(NA)
else
return(obj$p.value)
}
### DNA methylation data (beta.anno)
# Filtered out the X and Y chromosomes and probes that were designed for sequences with known polymorphisms or probes with poor mapping quality
data <- beta.anno[!beta.anno$MASK_general & beta.anno$CpG_chrm %in% paste0("chr",1:22),]
#### STEP 1
## Selection of the discovery set. N=34 glioma primary serum samples and N=19 non-glioma serum samples
set.seed(2005518)
glioma.primary.DiscoverySet <- sample(glioma.primary.serum,size=34)
set.seed(17760704)
non.glioma.DiscoverySet <- sample(non.glioma.serum,size=19)
Prediction.Models <- (mclapply(1:1000,
function(i) {
#### STEP 2
## Define the training set (N=27 gliomas; N=15 non-gliomas) and perform the differential analysis (Wilcoxon rank-sum test followed by FDR)
set.seed(seed = i)
glioma.trainingSet <- sample(glioma.primary.DiscoverySet,size=27)
g <- data[,glioma.trainingSet]
set.seed(seed = i)
non.glioma.trainingSet <- sample(non.glioma.DiscoverySet,size=15)
ng <- data[,non.glioma.trainingSet]
training.data <- cbind.data.frame(ng,g)
p <- apply(training.data,1,function(x) {
zz <- my.wilcox.test.p.value(as.matrix(x[1:15]),as.matrix(x[16:42]),na.action=na.omit)
return(zz)
})
g.m <- apply(g,1,mean,na.rm=T)
g.m <- g.m - Glioma.tissue$mean.DNAmeth
p.adj <- p.adjust(p,method="fdr")
p.adj <- merge(p.adj,g.m,by=0,all.x=T)
colnames(p.adj) <- c("probeID","p.adj","Glioma.tissue.mean.DNAmeth")
## Signature set
p <- (head(p.adj[order(p.adj[,"p.adj"], decreasing= F),], n = 1000))
p <- as.character(p[p$Glioma.tissue.mean.DNAmeth < 0.05 & p$Glioma.tissue.mean.DNAmeth > -0.05 & !is.na(p$Glioma.tissue.mean.DNAmeth),"probeID"])
p <- rownames(na.omit(data[p,c(glioma.primary.DiscoverySet,non.glioma.DiscoverySet)]))
training.data <- as.data.frame(t(training.data[p,]))
training.data$class <- c(rep("non.glioma",length(non.glioma.trainingSet)),rep("glioma",length(glioma.trainingSet)))
training.data$class <- factor(training.data$class)
#### STEP 3
## Generate Predictive Model
fitControl <- trainControl(
method = "repeatedcv",
number = 10,
repeats = 10)
set.seed(210)
mtryVals <- floor(c(seq(100, 2000, by=100),
sqrt(ncol(training.data))))
mtryGrid <- data.frame(.mtry=mtryVals)
set.seed(420)
RF.obj <- train(class ~ .,
data = training.data,
method = "rf",
trControl = fitControl,
ntree = 5000,
importance = TRUE,
tuneGrid = mtryGrid)
save(RF.obj,file=paste0("RF.",i,".rda"))
#### STEP 4
## Test set
glioma.TestSet <- setdiff(glioma.primary.DiscoverySet,glioma.trainingSet)
non.glioma.TestSet <- setdiff(non.glioma.DiscoverySet,non.glioma.trainingSet)
Test.set <- data[p,c(non.glioma.TestSet,glioma.TestSet)]
Test.set <- as.data.frame(t(Test.set))
#### STEP 5
## Apply Predictive model to classify test set
Test.set$RF.score <- predict(RF.obj,Test.set,type = "prob")$glioma
Test.set$class <- c(rep("non.glioma",length(non.glioma.TestSet)),rep("glioma",length(glioma.TestSet)))
Test.set <- Test.set[,c("RF.score","class")]
#### STEP 6
## Store RF score
return(Test.set)
}, mc.cores=cores))
Prediction.Models.df <- bind_cols(Prediction.Models)
cols <- seq(from=1,to=ncol(Prediction.Models.df),by=2)
Prediction.Models.df <- Prediction.Models.df[,c(2,cols)]
#### STEP 7
## Select the signature+model that correctly classifies Glioma and Non-glioma with 100% accuracy
best.RF.model <- rbind.data.frame(aggregate(.~class, Prediction.Models.df, max)[2,],aggregate(.~class, Prediction.Models.df, min)[1,])
best.RF.model <- best.RF.model[,-1]
best.RF.model <- best.RF.model[2,] - best.RF.model[1,]
i <- which(as.numeric(best.RF.model) == max(as.numeric(best.RF.model)))
#### STEP 8
## Evaluate GeLB with an independent validation set
load(paste0("RF.",i,".rda"))
GeLB.signature <- RF.obj$trainingData
GeLB.signature <- colnames(GeLB.signature)[-ncol(GeLB.signature)]
glioma.validationSet <- setdiff(glioma.primary.serum,glioma.primary.DiscoverySet)
non.glioma.validationSet <- setdiff(non.glioma.serum,non.glioma.DiscoverySet)
Validation.set <- data[GeLB.signature,c(non.glioma.validationSet,glioma.validationSet)]
Validation.set <- as.data.frame(t(Validation.set))
Validation.set$GeLB.score <- predict(RF.obj,Validation.set,type = "prob")$glioma
#### STEP 9
## Apply GeLB using longitudinal data
Application.set <- data[GeLB.signature,glioma.recurrent.serum]
Application.set <- as.data.frame(t(Application.set))
Application.set$GeLB.score <- predict(RF.obj,Application.set,type = "prob")$glioma