-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathmobilenetv3_large.py
105 lines (94 loc) · 3.63 KB
/
mobilenetv3_large.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright 2019 Bisonai Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of paper Searching for MobileNetV3, https://arxiv.org/abs/1905.02244
MobileNetV3 Large
"""
import tensorflow as tf
from layers import ConvNormAct
from layers import Bneck
from layers import LastStage
from utils import _make_divisible
from utils import LayerNamespaceWrapper
class MobileNetV3(tf.keras.Model):
def __init__(
self,
num_classes: int=1001,
width_multiplier: float=1.0,
name: str="MobileNetV3_Large",
divisible_by: int=8,
l2_reg: float=1e-5,
):
super().__init__(name=name)
# First layer
self.first_layer = ConvNormAct(
16,
kernel_size=3,
stride=2,
padding=1,
norm_layer="bn",
act_layer="hswish",
use_bias=False,
l2_reg=l2_reg,
name="FirstLayer",
)
# Bottleneck layers
self.bneck_settings = [
# k exp out SE NL s
[ 3, 16, 16, False, "relu", 1 ],
[ 3, 64, 24, False, "relu", 2 ],
[ 3, 72, 24, False, "relu", 1 ],
[ 5, 72, 40, True, "relu", 2 ],
[ 5, 120, 40, True, "relu", 1 ],
[ 5, 120, 40, True, "relu", 1 ],
[ 3, 240, 80, False, "hswish", 2 ],
[ 3, 200, 80, False, "hswish", 1 ],
[ 3, 184, 80, False, "hswish", 1 ],
[ 3, 184, 80, False, "hswish", 1 ],
[ 3, 480, 112, True, "hswish", 1 ],
[ 3, 672, 112, True, "hswish", 1 ],
[ 5, 672, 160, True, "hswish", 2 ],
[ 5, 960, 160, True, "hswish", 1 ],
[ 5, 960, 160, True, "hswish", 1 ],
]
self.bneck = tf.keras.Sequential(name="Bneck")
for idx, (k, exp, out, SE, NL, s) in enumerate(self.bneck_settings):
out_channels = _make_divisible(out * width_multiplier, divisible_by)
exp_channels = _make_divisible(exp * width_multiplier, divisible_by)
self.bneck.add(
LayerNamespaceWrapper(
Bneck(
out_channels=out_channels,
exp_channels=exp_channels,
kernel_size=k,
stride=s,
use_se=SE,
act_layer=NL,
),
name=f"Bneck{idx}")
)
# Last stage
penultimate_channels = _make_divisible(960 * width_multiplier, divisible_by)
last_channels = _make_divisible(1_280 * width_multiplier, divisible_by)
self.last_stage = LastStage(
penultimate_channels,
last_channels,
num_classes,
l2_reg=l2_reg,
)
def call(self, input):
x = self.first_layer(input)
x = self.bneck(x)
x = self.last_stage(x)
return x